1
|
Bai H, Ma Y, Qiu H, Qi Y, Huang Y, Guo Y, Sun L, Li M, Fei D, Ma M, Liu Y. Chinese sacbrood virus mediates m6A modification to target and suppress the expression of hemolymph maintenance gene AF9, exacerbating bee infections. J Virol 2025; 99:e0211724. [PMID: 39898642 PMCID: PMC11915840 DOI: 10.1128/jvi.02117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
The Chinese sacbrood virus (CSBV) severely threatens the beekeeping industry, wherein 3- to 5-day-old larvae in the critical differentiation stage are highly susceptible to low levels of CSBV exposure. Once infected, larvae cannot undergo normal pupation, but the pathogenic mechanism remains unclear. Previous studies have shown that m6A modification plays an important regulatory role in larval development during the critical differentiation stage. However, it is unknown whether CSBV infection affects the pupation of honeybee larvae by altering m6A modification. Here, a novel immunoregulatory factor, AF9, was identified in honeybee larvae through combined methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq analysis following CSBV infection. Enzyme-linked immunosorbent assay (ELISA) quantification of m6A methylation in total RNA and MeRIP-qPCR further revealed that CSBV infection of honeybee larvae inhibits the expression of AF9 via m6A modification, thereby hindering the host innate immune response and promoting CSBV replication. MeRIP-qPCR was then used to demonstrate that AcMETTL3 targets and modifies AF9 mRNA, thereby inhibiting AF9 expression. Homology and functional analysis of human-derived AF9 (MLLT3) suggested that AF9 exerted a similar effect as MLLT3 on honeybee hemolymph functioning. dsRNA was then fed to silence genes, followed by RNA extraction and expression analysis from hemolymph. Downregulation of AF9 expression led to decreased numbers of live cells in the hemolymph of honeybee larvae and a reduction in phenoloxidase activity, thereby inhibiting the host immune response. Finally, an Apis mellifera pupation infection model was constructed to further explore the antiviral activities associated with AmAF9. AmAF9 exerted a similarly significant antiviral effect against deformed wing virus (DWV) and acute bee paralysis virus (ABPV) infections in Apis mellifera pupae. These results indicate that CSBV infection promotes overall m6A modification in the host and inhibits the expression of AF9 through AcMETTL3 targeting, leading to host immunosuppression and exacerbating honeybee infection. Similarly, AF9 is stably expressed in Apis mellifera and exhibits the same antiviral effect, making it a broad-spectrum target in honeybee viruses. IMPORTANCE The Chinese sacbrood virus (CSBV) poses a serious threat to the health of Apis cerana colonies, yet its specific pathogenic mechanism remains unclear. This study shows that infection with CSBV can enhance overall m6A modification levels in Apis cerana larvae and suppress the expression of AF9 by promoting targeting of AcMETTL3, thereby inhibiting the innate immune response and exacerbating CSBV infection. Further analyses indicated that AF9 functions similarly as the mammalian homologous gene MLLT3 by maintaining normal functions of hemolymph. Moreover, AF9 can also significantly inhibit infections by common Apis mellifera viruses. In summary, a new mechanism is detailed here by which CSBV escapes the host's innate immune response by enhancing m6A modification to target and suppress the immune response gene AF9. This study also provides new insights into the mechanisms by which bee viruses inhibit host immune responses and suggests that AF9 may serve as a potential new broad-spectrum antiviral target in bees.
Collapse
Affiliation(s)
- Hua Bai
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yueyu Ma
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Huitong Qiu
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yang Qi
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yingshuo Huang
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yaxi Guo
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Li Sun
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ming Li
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dongliang Fei
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuming Liu
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Jiao Y, Palli SR. N 6-adenosine (m 6A) mRNA methylation is required for Tribolium castaneum development and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103985. [PMID: 37422274 PMCID: PMC10528953 DOI: 10.1016/j.ibmb.2023.103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Gene expression is regulated at various levels, including post-transcriptional mRNA modifications, where m6A methylation is the most common modification of mRNA. The m6A methylation regulates multiple stages of mRNA processing, including splicing, export, decay, and translation. How m6A modification is involved in insect development is not well known. We used the red flour beetle, Tribolium castaneum, as a model insect to identify the role of m6A modification in insect development. RNA interference (RNAi)-mediated knockdown of genes coding for m6A writers (m6A methyltransferase complex, depositing m6A to mRNA) and readers (YTH-domain proteins, recognizing and executing the function of m6A) was conducted. Knockdown of most writers during the larval stage caused a failure of ecdysis during eclosion. The loss of m6A machinery sterilized both females and males by interfering with the functioning of reproductive systems. Females treated with dsMettl3, the main m6A methyltransferase, laid significantly fewer and reduced-size eggs than the control insects. In addition, the embryonic development in eggs laid by dsMettl3 injected females was terminated in the early stages. Knockdown studies also showed that the cytosol m6A reader, YTHDF, is likely responsible for executing the function of m6A modifications during insect development. These data suggest that m6A modifications are critical for T. castaneum development and reproduction.
Collapse
Affiliation(s)
- Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
3
|
Liu C, Cao J, Zhang H, Wu J, Yin J. Profiling of Transcriptome-Wide N6-Methyladenosine (m6A) Modifications and Identifying m6A Associated Regulation in Sperm Tail Formation in Anopheles sinensis. Int J Mol Sci 2022; 23:ijms23094630. [PMID: 35563020 PMCID: PMC9101273 DOI: 10.3390/ijms23094630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in many species have revealed potential regulatory functions of this RNA modification by m6A players—writers, readers, and erasers. Here, we first profile transcriptome-wide m6A in female and male Anopheles sinensis and reveal that m6A is also a highly conserved modification of mRNA in mosquitoes. Distinct from mammals and yeast but similar to Arabidopsis thaliana, m6A in An. sinensis is enriched not only around the stop codon and within 3′-untranslated regions but also around the start codon and 5′-UTR. Gene ontology analysis indicates the unique distribution pattern of m6A in An. sinensis is associated with mosquito sex-specific pathways such as tRNA wobble uridine modification and phospholipid-binding in females, and peptidoglycan catabolic process, exosome and signal recognition particle, endoplasmic reticulum targeting, and RNA helicase activity in males. The positive correlation between m6A deposition and mRNA abundance indicates that m6A can play a role in regulating gene expression in mosquitoes. Furthermore, many spermatogenesis-associated genes, especially those related to mature sperm flagellum formation, are positively modulated by m6A methylation. A transcriptional regulatory network of m6A in An. sinensis is first profiled in the present study, especially in spermatogenesis, which may provide a new clue for the control of this disease-transmitting vector.
Collapse
|
4
|
Rowe L, Rockwell AL. Ubiquitous Knockdown of Mettl3 using TRiP.GL01126 Results in Spermatid Mislocalization During Drosophila Spermatogenesis. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000511. [PMID: 35071998 PMCID: PMC8767421 DOI: 10.17912/micropub.biology.000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
METTL3, the enzyme that catalyzes the m6A RNA modification in Drosophila is highly conserved and essential in various eukaryotic organisms. Mettl3 and its homologs have been linked to biological processes such as gametogenesis. We focused on characterizing the role of METTL3 in Drosophila spermatogenesis. We used the Gal4-UAS system to ubiquitously knockdown Mettl3 in both somatic cyst cells and germline cells. Using immunostaining and confocal microscopy, we found spermatid bundles mislocalize in testes that contain the morphologically abnormal swollen apical tip. Our result suggests Mettl3 knockdown using TRiP.GL01126 results in spermatogenesis aberrations.
Collapse
|