1
|
Eizuka M, Toya Y, Yamada S, Oizumi T, Yanai S, Kudara N, Yanagawa N, Sugai T, Matsumoto T. A case of undifferentiated pleomorphic rectal sarcoma occurring after radiation exposure. Clin J Gastroenterol 2024; 17:1033-1038. [PMID: 39122886 PMCID: PMC11549194 DOI: 10.1007/s12328-024-02026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
A 72 year-old man was referred to our hospital for a detailed examination of a recurrent rectal polyp. He had past histories of surgery and radiation therapy for prostate cancer at the age of 66 and endoscopic excision of a rectal polyp at the age of 70. Colonoscopy revealed a semi-pedunculated lesion surrounded by friable mucosa, which was positive under positron-emission tomography-computed tomography. Histopathological examination of the endoscopically excised polyp revealed proliferation of atypical cells, characterized by strong pleomorphic or spindle morphology, which was immunohistochemically compatible with undifferentiated pleomorphic sarcoma. We diagnosed this case as sarcoma presumably associated with radiation proctitis.
Collapse
Affiliation(s)
- Makoto Eizuka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan.
| | - Yosuke Toya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Shun Yamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Tomofumi Oizumi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Shunichi Yanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Norihiko Kudara
- Department of Gastroenterology, Iwate Prefectural Ofunato Hospital, Ofunato, Iwate, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| |
Collapse
|
2
|
Quezada-Maldonado EM, Cerrato-Izaguirre D, Morales-Bárcenas R, Bautista-Ocampo Y, Santibáñez-Andrade M, Quintana-Belmares R, Chirino YI, Basurto-Lozada P, Robles-Espinoza CD, Sánchez-Pérez Y, García-Cuellar CM. Mutational landscape induced by chronic exposure to environmental PM 10 and PM 2.5 in A549 lung epithelial cell. CHEMOSPHERE 2024; 368:143766. [PMID: 39551196 DOI: 10.1016/j.chemosphere.2024.143766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Exposure to particulate matter (PM) has been linked to an increased risk of multiple diseases, primarily lung cancer, through various molecular mechanisms. However, the mutagenic potential of PM remains unclear. This study aimed to provide a comprehensive description of genetic mutations and mutagenic signatures resulting from chronic exposure to PM10 or PM2.5. Using whole exome sequencing, we identified driver mutations and mutational signatures in A549 cells, a lung epithelial cell model subjected to weekly exposure to either PM10 or PM2.5, for a period of 28 weeks. The number of single nucleotide variations, insertions, and deletions increased depending on the duration of exposure. PM10 generated the highest number of genomic alterations. Amplifications in SYK (oncogene) and mutations in NCOR1 (tumor suppressor gene) were prevalent in cells exposed to either PM10 or PM2.5; however, other mutations were exclusive, such as TP53 and ANK3 for PM10, and ERCC1 and ERCC2 for PM2.5. Different p53-related signaling pathways were most enriched by driver mutations upon exposure to both PM10 and PM2.5, particularly the glucose deprivation pathway. Exposure to either PM10 or PM2.5 resulted in high frequencies of C > A substitutions and one-base insertions/deletions in microhomology sites. The single-base substitution (SBS) signature SBS05, related to the nucleotide excision DNA repair pathway, contributed the most to both PM10-and PM2.5-exposed cells. The contribution of signature SBS18, related to oxidative stress, was observed in cells exposed to either PM10 or PM2.5, but a greater contribution was observed in PM2.5-exposed cells. In addition, SBS03 and SBS36, which are related to different DNA damage repair mechanisms, were observed more frequently in PM10-exposed cells. We assessed the mutagenic potential of PM10 and PM2.5, as a complete mixture, identifying mutated driver genes and mutational signatures generated by chronic PM exposure, which could contribute to the development of cancer, cardiovascular, and digestive diseases.
Collapse
Affiliation(s)
- Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22. Tlalpan. México CP 14080. CDMX, Mexico
| | - Dennis Cerrato-Izaguirre
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22. Tlalpan. México CP 14080. CDMX, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22. Tlalpan. México CP 14080. CDMX, Mexico
| | - Yanueh Bautista-Ocampo
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22. Tlalpan. México CP 14080. CDMX, Mexico
| | - Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22. Tlalpan. México CP 14080. CDMX, Mexico
| | - Raúl Quintana-Belmares
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22. Tlalpan. México CP 14080. CDMX, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México 54090, CP, Mexico
| | - Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, 76010, CP, Mexico
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, 76010, CP, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22. Tlalpan. México CP 14080. CDMX, Mexico.
| | - Claudia M García-Cuellar
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México, 14080, CP, Mexico.
| |
Collapse
|
3
|
Galluccio M, Tripicchio M, Pochini L. The Human OCTN Sub-Family: Gene and Protein Structure, Expression, and Regulation. Int J Mol Sci 2024; 25:8743. [PMID: 39201429 PMCID: PMC11354717 DOI: 10.3390/ijms25168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
OCTN1 and OCTN2 are membrane transport proteins encoded by the SLC22A4 and SLC22A5 genes, respectively. Even though several transcripts have been predicted by bioinformatics for both genes, only one functional protein isoform has been described for each of them. Both proteins are ubiquitous, and depending on the physiopathological state of the cell, their expression is regulated by well-known transcription factors, although some aspects have been neglected. A plethora of missense variants with uncertain clinical significance are reported both in the dbSNP and the Catalogue of Somatic Mutations in Cancer (COSMIC) databases for both genes. Due to their involvement in human pathologies, such as inflammatory-based diseases (OCTN1/2), systemic primary carnitine deficiency (OCTN2), and drug disposition, it would be interesting to predict the impact of variants on human health from the perspective of precision medicine. Although the lack of a 3D structure for these two transport proteins hampers any speculation on the consequences of the polymorphisms, the already available 3D structures for other members of the SLC22 family may provide powerful tools to perform structure/function studies on WT and mutant proteins.
Collapse
Affiliation(s)
- Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Martina Tripicchio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
4
|
Raj R, Kim HG, Xu M, Roach T, Liebner D, Konieczkowski D, Tinoco G. Clinical Characteristics, Patterns of Care, and Treatment Outcomes of Radiation-Associated Sarcomas. Cancers (Basel) 2024; 16:1918. [PMID: 38791996 PMCID: PMC11119080 DOI: 10.3390/cancers16101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Radiation-associated sarcomas (RASs) are rare tumors with limited contemporary data to inform prognostication and management. We sought to identify the clinical presentation, patterns of care, and prognostic factors of RASs. RAS patients treated at a single institution from 2015 to 2021 were retrospectively reviewed for clinicopathologic variables, treatment strategies, and outcomes. Thirty-eight patients were identified with a median follow-up of 30.5 months. The median age at RAS diagnosis was 68.4 years (27.9-85.4), with a median latency from index radiotherapy (RT) of 9.1 years (3.7-46.3). RAS histologies included angiosarcoma (26%), undifferentiated pleomorphic sarcoma (21%), and osteosarcoma (18%). Most were high-grade (76%). Genomic profiling revealed low tumor mutational burden, frequent inactivating TP53 mutations (44%), CDKN2A deletions (26%), and MYC amplifications (22%), particularly in breast angiosarcomas. Of 38 patients, 33 presented with localized disease, 26 of whom were treated with curative intent. Overall, the median progression-free survival (PFS) was 9.5 months (1.4-34.7), and the overall survival (OS) was 11.1 months (0.6-31.6). Patients with localized vs. metastatic RASs had a longer PFS (HR, 3.0 [1.1-8.5]; p = 0.03) and OS (HR, 3.0 [1.04-8.68]; p = 0.03). Among localized RAS patients, high grade was associated with shorter OS (HR, 4.6 [1.04-20.30]; p = 0.03) and resection with longer OS (mean 58.8 vs. 6.1 months, HR, 0.1 [0.03-0.28]; p < 0.001). Among patients undergoing resection, negative margins were associated with improved OS (mean 71.0 vs. 15.5 months, HR, 5.1 [1.4-18.2]; p = 0.006). Patients with localized disease, particularly those undergoing R0 resection, demonstrated significantly better outcomes. Novel strategies are urgently needed to improve treatment outcomes in this challenging group of diseases.
Collapse
Affiliation(s)
- Rohit Raj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.R.); (D.K.)
| | - Han Gil Kim
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (H.G.K.); (M.X.); (D.L.)
| | - Menglin Xu
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (H.G.K.); (M.X.); (D.L.)
| | - Tyler Roach
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - David Liebner
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (H.G.K.); (M.X.); (D.L.)
| | - David Konieczkowski
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.R.); (D.K.)
| | - Gabriel Tinoco
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (H.G.K.); (M.X.); (D.L.)
| |
Collapse
|
5
|
Youk J, Kwon HW, Lim J, Kim E, Kim T, Kim R, Park S, Yi K, Nam CH, Jeon S, An Y, Choi J, Na H, Lee ES, Cho Y, Min DW, Kim H, Kang YR, Choi SH, Bae MJ, Lee CG, Kim JG, Kim YS, Yu T, Lee WC, Shin JY, Lee DS, Kim TY, Ku T, Kim SY, Lee JH, Koo BK, Lee H, Yi OV, Han EC, Chang JH, Kim KS, Son TG, Ju YS. Quantitative and qualitative mutational impact of ionizing radiation on normal cells. CELL GENOMICS 2024; 4:100499. [PMID: 38359788 PMCID: PMC10879144 DOI: 10.1016/j.xgen.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.33 mutational events per Gb genome, comprising 2.15 indels, 0.17 SVs, and 0.01 CGRs, despite a high level of inter-cellular stochasticity. The mutational burden was dependent on total irradiation dose, regardless of dose rate or cell type. The findings were further validated in IR-induced secondary cancers and single cells without clonalization. Overall, our study highlights a comprehensive and clear picture of IR effects on normal mammalian genomes.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Woo Kwon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joonoh Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Eunji Kim
- Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20, Boramae-ro 5 Gil, Dongjak-gu, Seoul 07061, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taewoo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sara Jeon
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwook Choi
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Hyelin Na
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Eon-Seok Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Youngwon Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dong-Wook Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - HyoJin Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Joon-Goon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Tosol Yu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea
| | | | | | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Su Yeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - On Vox Yi
- Department of Breast Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Eon Chul Han
- Department of Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea.
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
6
|
Yamamori A, Murayama S, Takahashi I, Akaihata M, Kakuda Y, Sugino T, Aramaki T, Onoe T, Takahashi Y, Ishida Y. Young Adult Secondary Cancer After Proton Beam Therapy: A Case Study. Adv Radiat Oncol 2024; 9:101307. [PMID: 38260212 PMCID: PMC10801643 DOI: 10.1016/j.adro.2023.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/26/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Ayako Yamamori
- Division of Pediatrics (and the AYA Generation), Shizuoka Cancer Center, Shizuoka, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Ikuko Takahashi
- Division of Pediatrics (and the AYA Generation), Shizuoka Cancer Center, Shizuoka, Japan
| | - Mitsuko Akaihata
- Division of Pediatrics (and the AYA Generation), Shizuoka Cancer Center, Shizuoka, Japan
| | | | | | - Takeshi Aramaki
- Interventional Radiology, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ishida
- Division of Pediatrics (and the AYA Generation), Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
7
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|