1
|
Anam Z, Kumari G, Mukherjee S, Rex DAB, Biswas S, Maurya P, Ravikumar S, Gupta N, Kushawaha AK, Sah RK, Chaurasiya A, Singhal J, Singh N, Kaushik S, Prasad TSK, Pati S, Ranganathan A, Singh S. Complementary crosstalk between palmitoylation and phosphorylation events in MTIP regulates its role during Plasmodium falciparum invasion. Front Cell Infect Microbiol 2022; 12:924424. [PMID: 36250062 PMCID: PMC9556994 DOI: 10.3389/fcimb.2022.924424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein–protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP’s interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Zille Anam
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | | | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Susendaran Ravikumar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ayushi Chaurasiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Niharika Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Kaushik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Anand Ranganathan, ; Soumya Pati,
| |
Collapse
|
2
|
Anam ZE, Joshi N, Gupta S, Yadav P, Chaurasiya A, Kahlon AK, Kaushik S, Munde M, Ranganathan A, Singh S. A De novo Peptide from a High Throughput Peptide Library Blocks Myosin A -MTIP Complex Formation in Plasmodium falciparum. Int J Mol Sci 2020; 21:ijms21176158. [PMID: 32859024 PMCID: PMC7503848 DOI: 10.3390/ijms21176158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023] Open
Abstract
Apicomplexan parasites, through their motor machinery, produce the required propulsive force critical for host cell-entry. The conserved components of this so-called glideosome machinery are myosin A and myosin A Tail Interacting Protein (MTIP). MTIP tethers myosin A to the inner membrane complex of the parasite through 20 amino acid-long C-terminal end of myosin A that makes direct contacts with MTIP, allowing the invasion of Plasmodium falciparum in erythrocytes. Here, we discovered through screening a peptide library, a de-novo peptide ZA1 that binds the myosin A tail domain. We demonstrated that ZA1 bound strongly to myosin A tail and was able to disrupt the native myosin A tail MTIP complex both in vitro and in vivo. We then showed that a shortened peptide derived from ZA1, named ZA1S, was able to bind myosin A and block parasite invasion. Overall, our study identified a novel anti-malarial peptide that could be used in combination with other antimalarials for blocking the invasion of Plasmodium falciparum.
Collapse
Affiliation(s)
- Zill e Anam
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Nishant Joshi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201304, India;
| | - Sakshi Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (M.M.)
| | - Preeti Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Ayushi Chaurasiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Shikha Kaushik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (M.M.)
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
- Correspondence: (A.R.); (S.S.)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; (Z.e.A.); (P.Y.); (A.C.); (A.K.K.); (S.K.)
- Correspondence: (A.R.); (S.S.)
| |
Collapse
|
3
|
Nemetski SM, Cardozo TJ, Bosch G, Weltzer R, O'Malley K, Ejigiri I, Kumar KA, Buscaglia CA, Nussenzweig V, Sinnis P, Levitskaya J, Bosch J. Inhibition by stabilization: targeting the Plasmodium falciparum aldolase-TRAP complex. Malar J 2015; 14:324. [PMID: 26289816 PMCID: PMC4545932 DOI: 10.1186/s12936-015-0834-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging resistance of the malaria parasite Plasmodium to current therapies underscores the critical importance of exploring novel strategies for disease eradication. Plasmodium species are obligate intracellular protozoan parasites. They rely on an unusual form of substrate-dependent motility for their migration on and across host-cell membranes and for host cell invasion. This peculiar motility mechanism is driven by the 'glideosome', an actin-myosin associated, macromolecular complex anchored to the inner membrane complex of the parasite. Myosin A, actin, aldolase, and thrombospondin-related anonymous protein (TRAP) constitute the molecular core of the glideosome in the sporozoite, the mosquito stage that brings the infection into mammals. METHODS Virtual library screening of a large compound library against the PfAldolase-TRAP complex was used to identify candidate compounds that stabilize and prevent the disassembly of the glideosome. The mechanism of these compounds was confirmed by biochemical, biophysical and parasitological methods. RESULTS A novel inhibitory effect on the parasite was achieved by stabilizing a protein-protein interaction within the glideosome components. Compound 24 disrupts the gliding and invasive capabilities of Plasmodium parasites in in vitro parasite assays. A high-resolution, ternary X-ray crystal structure of PfAldolase-TRAP in complex with compound 24 confirms the mode of interaction and serves as a platform for future ligand optimization. CONCLUSION This proof-of-concept study presents a novel approach to anti-malarial drug discovery and design. By strengthening a protein-protein interaction within the parasite, an avenue towards inhibiting a previously "undruggable" target is revealed and the motility motor responsible for successful invasion of host cells is rendered inactive. This study provides new insights into the malaria parasite cell invasion machinery and convincingly demonstrates that liver cell invasion is dramatically reduced by 95 % in the presence of the small molecule stabilizer compound 24.
Collapse
Affiliation(s)
- Sondra Maureen Nemetski
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA. .,Department of Pediatrics, Phyllis and David Komansky Center for Children's Health, New York-Presbyterian Hospital-Weill Cornell Medical College, New York, USA.
| | - Timothy J Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA. .,Institute for Systems Genetics, New York University School of Medicine, New York, USA.
| | - Gundula Bosch
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Ryan Weltzer
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Kevin O'Malley
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Ijeoma Ejigiri
- Department of Medical Parasitology, New York University School of Medicine, New York, USA.
| | - Kota Arun Kumar
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology, New York University School of Medicine, New York, USA. .,Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martín-CONICET, 1650, San Martín, Buenos Aires, Argentina.
| | - Victor Nussenzweig
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology, New York University School of Medicine, New York, USA.
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Department of Medical Parasitology, New York University School of Medicine, New York, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Jelena Levitskaya
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| |
Collapse
|
4
|
Boucher LE, Bosch J. The apicomplexan glideosome and adhesins - Structures and function. J Struct Biol 2015; 190:93-114. [PMID: 25764948 PMCID: PMC4417069 DOI: 10.1016/j.jsb.2015.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 01/10/2023]
Abstract
The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models.
Collapse
Affiliation(s)
- Lauren E Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. J Biol Chem 2014; 289:30832-30841. [PMID: 25231988 DOI: 10.1074/jbc.m114.572453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.
Collapse
Affiliation(s)
- Carol S Bookwalter
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405
| | - Anne Kelsen
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Jacqueline M Leung
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Gary E Ward
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405.
| | - Kathleen M Trybus
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|