1
|
Øvergård AC, Borchel A, Eichner C, Hjertaker S, Nagata J, Midtbø HMD, Nelson PA, Nilsen F, Hamre LA. The generalist Caligus elongatus is better at dampening the Atlantic salmon immune response than the salmonid specialist Lepeophtheirus salmonis. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110225. [PMID: 39993487 DOI: 10.1016/j.fsi.2025.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The sea lice Caligus elongatus and Lepeophtheirus salmonis are both causing problems in salmonid aquaculture. Since the salmonid specialist L. salmonis represents the dominating problem, research on host-parasite interactions has focused on L. salmonis and Atlantic salmon (Salmo salar), while less is known for the generalist C. elongatus. As new knowledge can be found in the comparison between a specialist and a generalist, the present study compares the salmon immune responses and louse modulatory proteins between C. elongatus and L. salmonis. While the severity of skin lesions inflicted underneath both lice species appeared similar, C. elongatus seemed to be better at dampening inflammatory responses than L. salmonis. A comparison of exocrine gland genes encoding proteins with known effect at the host-parasite interface showed that C. elongatus express most of the genes previously identified in L. salmonis. Interestingly, three orthologues of the labial gland protein 3 (LGP3) known to induce cell death in salmonid immune cells were found. This expansion of the LGP3 gene might explain the limited influx of immune cells observed underneath C. elongatus, though yet unknown C. elongatus specific glandular proteins might also be at play. Despite the limited inflammatory response induced by adult C. elongatus, they provoke a forceful host anti-lice behaviour that is comparably less prominent in salmon infested with L. salmonis. Setule-like processes identified on the ventral surface of the C. elongatus marginal membrane might be of importance here, as could species specific behavioural differences or differences in the host modulatory proteins.
Collapse
Affiliation(s)
- Aina-Cathrine Øvergård
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway.
| | - Andreas Borchel
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway
| | - Christiane Eichner
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway
| | - Sol Hjertaker
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway
| | - Jun Nagata
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Helena Marie Doherty Midtbø
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway
| | - Patrick Alexander Nelson
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway
| | - Frank Nilsen
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway
| | - Lars Are Hamre
- SLCR-Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Pb. 7803, Bergen, NO-5020, Norway
| |
Collapse
|
2
|
Midtbø HMD, Eichner C, Hamre LA, Dondrup M, Flesland L, Tysseland KH, Kongshaug H, Borchel A, Skoge RH, Nilsen F, Øvergård AC. Salmon louse labial gland enzymes: implications for host settlement and immune modulation. Front Genet 2024; 14:1303898. [PMID: 38299097 PMCID: PMC10828956 DOI: 10.3389/fgene.2023.1303898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Salmon louse (Lepeophtheirus salmonis) is a skin- and blood-feeding ectoparasite, infesting salmonids. While feeding, labial gland proteins from the salmon louse may be deposited on the Atlantic salmon (Salmo salar) skin. Previously characterized labial gland proteins are involved in anti-coagulation and may contribute to inhibiting Atlantic salmon from mounting a sufficient immune response against the ectoparasite. As labial gland proteins seem to be important in the host-parasite interaction, we have, therefore, identified and characterized ten enzymes localized to the labial gland. They are a large group of astacins named L. salmonis labial gland astacin 1-8 (LsLGA 1-8), one serine protease named L. salmonis labial gland serine protease 1 (LsLGSP1), and one apyrase named L. salmonis labial gland apyrase 1 (LsLGAp1). Protein domain predictions showed that LsLGA proteins all have N-terminal ShK domains, which may bind to potassium channels targeting the astacins to its substrate. LsLGA1 and -4 are, in addition, expressed in another gland type, whose secrete also meets the host-parasite interface. This suggests that LsLGA proteins may have an anti-microbial function and may prevent secondary infections in the wounds. LsLGAp1 is predicted to hydrolyze ATP or AMP and is, thereby, suggested to have an immune dampening function. In a knockdown study targeting LsLGSP1, a significant increase in IL-8 and MMP13 at the skin infestation site was seen under LsLGSP1 knockdown salmon louse compared to the control, suggesting that LsLGSP1 may have an anti-inflammatory effect. Moreover, most of the identified labial gland proteins are expressed in mature copepodids prior to host settlement, are not regulated by starvation, and are expressed at similar or higher levels in lice infesting the salmon louse-resistant pink salmon (Oncorhynchus gorbuscha). This study, thereby, emphasizes the importance of labial gland proteins for host settlement and their immune dampening function. This work can further contribute to anti-salmon louse treatment such as vaccine development, functional feed, or gene-edited salmon louse-resistant Atlantic salmon.
Collapse
Affiliation(s)
| | - Christiane Eichner
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Lars Are Hamre
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Michael Dondrup
- Sea Lice Research Centre, Department of Informatics, University of Bergen, Bergen, Norway
| | - Linn Flesland
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Borchel
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Renate Hvidsten Skoge
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Borchel A, Eichner C, Øvergård AC. Mining Lepeophtheirus salmonis RNA-Seq data for qPCR reference genes and their application in Caligus elongatus. Exp Parasitol 2023; 248:108511. [PMID: 36921884 DOI: 10.1016/j.exppara.2023.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Lepeophtheirus salmonis and Caligus elongatus are two parasitic copepod species posing a significant threat to salmonid aquaculture. Consequently, several gene expression studies are executed each year to gain new knowledge and treatment strategies. Though, to enable accurate gene expression measurements by quantitative real time PCR, stable reference genes are needed. Previous studies have mainly focused on a few genes selected based on their function as housekeeping genes, as these are often stably expressed in various cells and tissues. In the present study, however, RNA-sequencing data from 127 L. salmonis samples from different life stages and diverse environmental conditions were used to identify new candidate reference genes displaying low variation. From this, six genes were selected, and the stability validated by qPCR on samples from different life stages. Since neither a genome nor comprehensive RNA sequencing data are available for C. elongatus, homologous genes to those identified for L. salmonis were identified within a C. elongatus transcriptome assembly and validated by qPCR in different life stages. Overall, the genes eukaryotic translation initiation factor 1A (EIF1A) and serine/threonine-protein phosphatase 1 (PP1) displayed the highest stability in L. salmonis, while the combination of PP1 and ribosomal protein S13 (RPS13) was found to have the highest stability in C. elongatus. These genes are well-suited reference genes for qPCR applications which allow for accurate normalization of target genes.
Collapse
Affiliation(s)
- Andreas Borchel
- University of Bergen, SLRC-Sea Lice Research Centre, Department of Biological Sciences, Pb. 7803, 5020, Bergen, Norway.
| | - Christiane Eichner
- University of Bergen, SLRC-Sea Lice Research Centre, Department of Biological Sciences, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- University of Bergen, SLRC-Sea Lice Research Centre, Department of Biological Sciences, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
4
|
Khan MT, Dalvin S, Nilsen F, Male R. Two apolipoproteins in salmon louse ( Lepeophtheirus salmonis), apolipoprotein 1 knock down reduces reproductive capacity. Biochem Biophys Rep 2021; 28:101156. [PMID: 34729423 PMCID: PMC8545670 DOI: 10.1016/j.bbrep.2021.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
The salmon louse, Lepeophtheirus salmonis is an ectoparasite of salmonid fish in the Northern Hemisphere, causing large economical losses in the aquaculture industry and represent a threat to wild populations of salmonids. Like other oviparous animals, it is likely that female lice use lipoproteins for lipid transport to maturing oocytes and other organs of the body. As an important component of lipoproteins, apolipoproteins play a vital role in the transport of lipids through biosynthesis of lipoproteins. Apolipoproteins have been studied in detail in different organisms, but no studies have been done in salmon lice. Two apolipoprotein encoding genes (LsLp1 and LsLp2) were identified in the salmon lice genome. Transcriptional analysis revealed both genes to be expressed at all stages from larvae to adult with some variation, LsLp1 generally higher than LsLp2 and both at their highest levels in adult stages of the louse. In adult female louse, the LsLp1 and LsLp2 transcripts were found in the sub-epidermal tissue and the intestine. RNA interference-mediated knockdown of LsLp1 and LsLp2 in female lice resulted in reduced expression of both transcripts. LsLp1 knockdown female lice produced significantly less offspring than control lice, while knockdown of LsLp2 in female lice caused no reduction in the number of offspring. These results suggest that LsLp1 has an important role in reproduction in female salmon lice. Salmon lice are ectoparasites and a major threat to aquaculture industry and wild salmon. Two apolipoproteins in salmon louse (Lepeophtheirus salmonis). Expressed at all stages from larvae to adult, sub-epidermal tissue and the intestine . RNA interference-mediated knockdown of LsLp1 and LsLp2. LsLp1 knockdown female lice produced significantly less offspring than control lice.
Collapse
Key Words
- Apolipoproteins
- CP, clotting protein
- Crustacea
- DIG, Digoxigenin
- Ectoparasite
- Gene expression
- LDL, low density lipoprotein
- LLTP, large lipid transfer protein
- Lp, lipophorin
- Ls, Lepeophtheirus salmonis
- MTP, microsomal triglyceride transfer protein
- RNAi
- RNAi, RNA interference
- Reproduction
- Vit, vitellogenins
- apo B-100, apolipoprotein B-100
- apoCr, apolipocrustaceins
- apoLp-II/I, apolipophorin-II/I
- dLPs, large discoidal lipoproteins
- ef1α, elongation factor 1 alpha
Collapse
Affiliation(s)
- Muhammad Tanveer Khan
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rune Male
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
- Corresponding author. Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020, Bergen, Norway.
| |
Collapse
|
5
|
Skern-Mauritzen R, Malde K, Eichner C, Dondrup M, Furmanek T, Besnier F, Komisarczuk AZ, Nuhn M, Dalvin S, Edvardsen RB, Klages S, Huettel B, Stueber K, Grotmol S, Karlsbakk E, Kersey P, Leong JS, Glover KA, Reinhardt R, Lien S, Jonassen I, Koop BF, Nilsen F. The salmon louse genome: Copepod features and parasitic adaptations. Genomics 2021; 113:3666-3680. [PMID: 34403763 DOI: 10.1016/j.ygeno.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.
Collapse
Affiliation(s)
| | - Ketil Malde
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Christiane Eichner
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Dondrup
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Francois Besnier
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Anna Zofia Komisarczuk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Nuhn
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Sussie Dalvin
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Kurt Stueber
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sindre Grotmol
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Egil Karlsbakk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Paul Kersey
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Kevin A Glover
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433 Ås, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Frank Nilsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway.
| |
Collapse
|
6
|
Heggland EI, Dondrup M, Nilsen F, Eichner C. Host gill attachment causes blood-feeding by the salmon louse (Lepeophtheirus salmonis) chalimus larvae and alters parasite development and transcriptome. Parasit Vectors 2020; 13:225. [PMID: 32375890 PMCID: PMC7201535 DOI: 10.1186/s13071-020-04096-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Blood-feeding is a common strategy among parasitizing arthropods, including the ectoparasitic salmon louse (Lepeophtheirus salmonis), feeding off its salmon host's skin and blood. Blood is rich in nutrients, among these iron and heme. These are essential molecules for the louse, yet their oxidative properties render them toxic to cells if not handled appropriately. Blood-feeding might therefore alter parasite gene expression. METHODS We infected Atlantic salmon with salmon louse copepodids and sampled the lice in two different experiments at day 10 and 18 post-infestation. Parasite development and presence of host blood in their intestines were determined. Lice of similar instar age sampled from body parts with differential access to blood, namely from gills versus lice from skin epidermis, were analysed for gene expression by RNA-sequencing in samples taken at day 10 for both experiments and at day 18 for one of the experiments. RESULTS We found that lice started feeding on blood when becoming mobile preadults if sitting on the fish body; however, they may initiate blood-feeding at the chalimus I stage if attached to gills. Lice attached to gills develop at a slower rate. By differential expression analysis, we found 355 transcripts elevated in lice sampled from gills and 202 transcripts elevated in lice sampled from skin consistent in all samplings. Genes annotated with "peptidase activity" were among the ones elevated in lice sampled from gills, while in the other group genes annotated with "phosphorylation" and "phosphatase" were pervasive. Transcripts elevated in lice sampled from gills were often genes relatively highly expressed in the louse intestine compared with other tissues, while this was not the case for transcripts elevated in lice sampled from skin. In both groups, more than half of the transcripts were from genes more highly expressed after attachment. CONCLUSIONS Gill settlement results in an alteration in gene expression and a premature onset of blood-feeding likely causes the parasite to develop at a slower pace.
Collapse
Affiliation(s)
- Erna Irene Heggland
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Michael Dondrup
- Department of Informatics and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Christiane Eichner
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Gonçalves AT, Collipal-Matamal R, Valenzuela-Muñoz V, Nuñez-Acuña G, Valenzuela-Miranda D, Gallardo-Escárate C. Nanopore sequencing of microbial communities reveals the potential role of sea lice as a reservoir for fish pathogens. Sci Rep 2020; 10:2895. [PMID: 32076035 PMCID: PMC7031262 DOI: 10.1038/s41598-020-59747-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Caligus rogercresseyi is a copepod ectoparasite with a high prevalence in salmon farms in Chile, causing severe welfare and economic concerns to the sector. Information on the parasite's underpinning mechanisms to support its life strategy is recently being investigated. Due to the critical role of microbiota, this study aimed to characterize the microbiota community associated with C. rogercresseyi from different regions with salmon aquaculture in Chile. Using third-generation sequencing with Nanopore technology (MinION) the full 16S rRNA gene from sea lice obtained from 8 areas distributed over the three main aquaculture regions were sequenced. Microbiota of the parasite is mainly comprised of members of phyla Proteobacteria and Bacteroidetes, and a core microbiota community with 147 taxonomical features was identified, and it was present in sea lice from the three regions. This community accounted for 19% of total identified taxa but more than 70% of the total taxonomical abundance, indicating a strong presence in the parasite. Several taxa with bioactive compound secretory capacity were identified, such as members of genus Pseudoalteromonas and Dokdonia, suggesting a possible role of the lice microbiota during the host infestation processes. Furthermore, the microbiota community was differentially associated with the salmon production, where several potential pathogens such as Vibrio, Tenacibaculum, and Aeromonas in Los Lagos, Aysén, and Magallanes region were identified. Notably, the Chilean salmon industry was initially established in the Los Lagos region but it's currently moving to the south, where different oceanographic conditions coexist with lice populations. The results originated by this study will serve as foundation to investigate putative role of sea lice as vectors for fish pathogens and also as reservoirs for antibiotic-resistant genes.
Collapse
Affiliation(s)
- Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile.,Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Rayen Collipal-Matamal
- Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile.,Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Gustavo Nuñez-Acuña
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile.,Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile.,Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile. .,Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile.
| |
Collapse
|
8
|
|