1
|
Conway JA, Ince S, Black S, Kramer ER. GDNF/RET signaling in dopamine neurons in vivo. Cell Tissue Res 2020; 382:135-146. [PMID: 32870383 DOI: 10.1007/s00441-020-03268-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal both in tandem and separately to exert many vital functions in the midbrain dopamine system. It is known that Ret has effects on maintenance, physiology, protection and regeneration in the midbrain dopamine system, with the physiological functions of GDNF still somewhat unclear. Notwithstanding, Ret ligands, such as GDNF, are considered as promising candidates for neuroprotection and/or regeneration in Parkinson's disease, although data from clinical trials are so far inconclusive. In this review, we discuss the current knowledge of GDNF/Ret signaling in the dopamine system in vivo as well as crosstalk with pathology-associated proteins and their signaling in mammals.
Collapse
Affiliation(s)
- James A Conway
- Peninsula Medical School, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Selvi Ince
- Peninsula Medical School, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth, UK
| | | | - Edgar R Kramer
- Peninsula Medical School, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
2
|
Kasanga EA, Owens CL, Cantu MA, Richard AD, Davis RW, McDivitt LM, Blancher B, Pruett BS, Tan C, Gajewski A, Manfredsson FP, Nejtek VA, Salvatore MF. GFR-α1 Expression in Substantia Nigra Increases Bilaterally Following Unilateral Striatal GDNF in Aged Rats and Attenuates Nigral Tyrosine Hydroxylase Loss Following 6-OHDA Nigrostriatal Lesion. ACS Chem Neurosci 2019; 10:4237-4249. [PMID: 31538765 DOI: 10.1021/acschemneuro.9b00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) improved motor function in Parkinson's disease (PD) patients in Phase I clinical trials, and these effects persisted months after GDNF discontinuation. Conversely, phase II clinical trials reported no significant effects on motor improvement vs placebo. The disease duration and the quantity, infusion approach, and duration of GDNF delivery may affect GDNF efficacy in PD treatment. However, identifying mechanisms activated by GDNF that affect nigrostriatal function may reveal additional avenues to partially restore nigrostriatal function. In PD and aging models, GDNF affects tyrosine hydroxylase (TH) expression or phosphorylation in substantia nigra (SN), long after a single GDNF injection in striatum. In aged rats, the GDNF family receptor, GFR-α1, increases TH expression and phosphorylation in SN. To determine if GFR-α1 could be a mechanistic link in long-term GDNF impact, we conducted two studies; first to determine if a single unilateral striatal delivery of GDNF affected GFR-α1 and TH over time (1 day, 1 week, and 4 weeks) in the striatum or SN in aged rats, and second, to determine if soluble GFR-α1 could mitigate TH loss following 6-hydroxydopamine (6-OHDA) lesion. In aged rats, GDNF bilaterally increased ser31 TH phosphorylation and GFR-α1 expression in SN at 1 day and 4 weeks after GDNF, respectively. In striatum, GFR-α1 expression decreased 1 week after GDNF, only on the GDNF-injected side. In 6-OHDA-lesioned rats, recombinant soluble GFR-α1 mitigated nigral, but not striatal, TH protein loss following 6-OHDA. Together, these results show GDNF has immediate and long-term impact on dopamine regulation in the SN, which includes a gradual increase in GFR-α1 expression that may sustain TH expression and dopamine function therein.
Collapse
Affiliation(s)
- Ella A Kasanga
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Catherine L Owens
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Mark A Cantu
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Adam D Richard
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Richard W Davis
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Lisa M McDivitt
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Blake Blancher
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Brandon S Pruett
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Christopher Tan
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Austin Gajewski
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology , Barrow Neurological Institute , Phoenix , Arizona 85013 , United States
| | - Vicki A Nejtek
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Michael F Salvatore
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| |
Collapse
|
3
|
Moyle LA, Blanc E, Jaka O, Prueller J, Banerji CR, Tedesco FS, Harridge SD, Knight RD, Zammit PS. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. eLife 2016; 5. [PMID: 27841748 PMCID: PMC5108591 DOI: 10.7554/elife.11405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD. DOI:http://dx.doi.org/10.7554/eLife.11405.001
Collapse
Affiliation(s)
- Louise A Moyle
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Blanc
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany.,Institute of Pathology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Oihane Jaka
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Johanna Prueller
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Christopher Rs Banerji
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Stephen Dr Harridge
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Robert D Knight
- Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Kramer ER, Liss B. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 2015; 589:3760-72. [DOI: 10.1016/j.febslet.2015.11.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
|
5
|
Maheu M, Lopez JP, Crapper L, Davoli MA, Turecki G, Mechawar N. MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression. Transl Psychiatry 2015; 5:e511. [PMID: 25689572 PMCID: PMC4445749 DOI: 10.1038/tp.2015.11] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
Although multiple studies have reported that peripheral glial cell line-derived neurotrophic factor (GDNF) is reduced in depression, cerebral GDNF signalling has yet to be examined in this condition. Here, we report an isoform-specific decrease in GDNF family receptor alpha 1 (GFRA1) mRNA expression, resulting in lowered GFRα1a protein levels in basolateral amygdala (BLA) samples from depressed subjects. Downregulation of GFRα1a was associated with increased expression of microRNAs, including miR-511, predicted to bind to long 3' untranslated region (3'-UTR)-containing transcripts (GFRA1-L) coding for GFRα1a. Transfection of human neural progenitor cells (NPCs) with a miR-511 mimic was sufficient to repress GFRA1-L/GFRα1a without altering GFRα1b, and resulted in pathway-specific changes in immediate early gene activity. Unexpectedly, GFRα1a knockdown did not reduce NPC responses to GDNF. Rather, it greatly enhanced mitogen-activated protein kinase signalling. This effect appeared to be mediated by GDNF/soluble GFRα1/neural cell adhesion molecule binding, and substituting the soluble GFRα1a/GFRα1b content of miR-511-transfected NPCs with that of controls rescued signalling. In light of previous reports suggesting that GFRα1b can inhibit GFRα1a-induced neuroplasticity, we also assessed the association between GFRα1 and doublecortin (DCX; a hyperplastic marker) in human BLA. Although controls displayed coordinated expression of GFRα1a and b isoforms and these correlated positively with DCX, the only significant association observed among depressed subjects was a strongly negative correlation between GFRα1b and DCX. Taken together, these results suggest that microRNA-mediated reductions of GFRα1a in depression change the quality, rather than the quantity, of GDNF signalling. They also suggest that central GDNF signalling may represent a novel target for antidepressant treatment.
Collapse
Affiliation(s)
- M Maheu
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - J P Lopez
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - L Crapper
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - M A Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - G Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada,Department of Human Genetics, McGill University, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, FBC Pavilion, Verdun, QC, Canada H4H1R3. E-mail:
| |
Collapse
|
6
|
Ho DXK, Tan YC, Tan J, Too HP, Ng WH. High-frequency stimulation of the globus pallidus interna nucleus modulates GFRα1 gene expression in the basal ganglia. J Clin Neurosci 2013; 21:657-60. [PMID: 24291478 DOI: 10.1016/j.jocn.2013.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/26/2013] [Indexed: 01/20/2023]
Abstract
Deep brain stimulation (DBS) is an established therapy for movement disorders such as Parkinson's disease (PD). Although the efficacy of DBS is clear, its precise molecular mechanism remains unknown. The glial cell line derived factor (GDNF) family of ligands has been shown to confer neuroprotective effects on dopaminergic neurons, and putaminal infusion of GDNF have been investigated in PD patients with promising results. Despite the potential therapeutic role of GDNF in alleviating motor symptoms, there is no data on the effects of electrical stimulation on GDNF-family receptor (GFR) expression in the basal ganglia structures. Here, we report the effects of electrical stimulation on GFRα1 isoforms, particularly GFRα1a and GFRα1b. Wistar rats underwent 2 hours of high frequency stimulation (HFS) at the globus pallidus interna nucleus. A control group was subjected to a similar procedure but without stimulation. The HFS group, sacrificed 24 hours after treatment, had a threefold decrease in mRNA expression level of GFRα1b (p=0.037), but the expression level reverted to normal 72 hours after stimulation. Our preliminary data reveal the acute effects of HFS on splice isoforms of GFRα1, and suggest that HFS may modulate the splice isoforms of GFRα1a and GFRα1b to varying degrees. Going forward, elucidating the interactions between HFS and GFR may shed new insights into the complexity of GDNF signaling in the nervous system and lead to better design of clinical trials using these signaling pathways to halt disease progression in PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Duncun Xun Kiat Ho
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.
| | - Yong Chee Tan
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Jiayi Tan
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Heng Phon Too
- Department of Biochemistry, National University of Singapore, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
7
|
McAlinden A, Shim KH, Wirthlin L, Ravindran S, Hering TM. Quantification of type II procollagen splice forms using alternative transcript-qPCR (AT-qPCR). Matrix Biol 2012; 31:412-20. [PMID: 22974592 DOI: 10.1016/j.matbio.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/22/2012] [Accepted: 08/31/2012] [Indexed: 01/21/2023]
Abstract
During skeletal development, the onset of chondrogenic differentiation is marked by expression of the α1(II) procollagen (Col2a1) gene. Exon 2 of Col2a1 codes for a cysteine-rich von Willebrand factor C-like domain. Chondroprogenitors express the exon 2-containing IIA and IID splice forms by utilizing adjacent 5' splice sites separated by 3 base pairs. There is a shift to expression of the shorter, exon 2-lacking IIB splice form with further differentiation. Alternative splicing analysis of Col2a1 splice forms has often relied upon semi-quantitative PCR, using a single set of PCR primers to amplify multiple splice forms. We show that this widely used method is inaccurate due to mismatched amplification efficiency of different-sized PCR products. We have developed the TaqMan®-based AT-qPCR (Alternative Transcript-qPCR) assay to more accurately quantify alternatively spliced mRNA, and demonstrate the measurement of Col2a1 splice form expression in differentiating ATDC5 cells in vitro, and in wild type mouse embryonic and postnatal cartilage in vivo. The AT-qPCR assay is based on the use of a multiple-amplicon standard (MAS) plasmid, containing a chemically synthesized cluster of splice site-spanning PCR amplicons, to quantify alternative splice forms by standard curve-based qPCR. The MAS plasmid designed for Col2a1 also contained an 18S rRNA amplicon for sample normalization, and an amplicon corresponding to a region spanning exon 52-53 to measure total Col2a1 mRNA. In mouse E12.5 to P70 cartilages, we observed the expected switch between the IIA and IIB splice forms; no IID or IIC splice products were observed. However, in the ATDC5 cultures, predominant expression of the IIA and IID splice forms was found at all times in culture. Additionally, we observed that the sum of the IIA, IIB and IID splice forms comprises only a small fraction of Col2a1 transcripts containing the constitutive exon 52-53 junction. We conclude from our results that the majority of ATDC5 cells in the assay described in this study remained as chondroprogenitors during culture in standard differentiation conditions, and that additional Col2a1 transcripts may be present. The validity of this novel AT-qPCR assay was confirmed by demonstrating the expected Col2a1 isoform expression patterns in vivo in developing mouse cartilage. The ability to measure true levels of procollagen type II splice forms will provide better monitoring of chondrocyte differentiation in other model systems. In addition, the AT-qPCR assay described here could be applied to any gene of interest to detect and quantify known and predicted alternative splice forms and can be scaled up for high throughput assays.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | | | | | | | | |
Collapse
|
8
|
Wan G, Too HP. A specific isoform of glial cell line-derived neurotrophic factor family receptor alpha 1 regulates RhoA expression and glioma cell migration. J Neurochem 2010; 115:759-70. [PMID: 20807316 DOI: 10.1111/j.1471-4159.2010.06975.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Malignant gliomas are highly invasive neuroepithelial tumors where the tendency to invade and migrate away from the primary tumor mass is thought to be a leading cause of tumor recurrence and treatment failures. Autocrine signals produced by secreted factors that signal through receptors on the tumor are known to contribute to the invasiveness. Glial cell line-derived neurotrophic factor and GDNF family receptor alpha 1 (GFRα1) are over-expressed in human gliomas. We have previously reported that human gliomas express high levels of GFRα1b, an alternatively spliced isoform of GFRα1. However, the functional significance of GFRα1b in glioma behaviors is currently unknown. In this study, we have designed isoform-specific small-interfering RNA to knockdown the highly homologous GFRα1a or GFRα1b isoform efficiently in malignant C6 glioma cells. Unexpectedly, the knockdown of GFRα1b but not GFRα1a induced cell elongation and inhibited C6 cell migration and invasion in vitro. In addition, GFRα1b was found to regulate the expression of RhoA small GTPase, which was required for migration of C6 cells. The decreases in RhoA expression and cell migration after GFRα1b knockdown were attenuated by small-interfering RNA -resistant GFRα1b but not GFRα1a, further demonstrating the specific role of GFRα1b in glioma migration. Interestingly, the knockdown of NCAM but not receptor tyrosine kinase Ret resulted in the reduction of RhoA expression and C6 cell migration. Taken together, these unanticipated results indicate that GFRα1b is involved in glioma migration through glial cell line-derived neurotrophic factor -GFRα1b-NCAM signaling complex and modulation of RhoA expression.
Collapse
Affiliation(s)
- Guoqiang Wan
- Department of Biochemistry, National University of Singapore, Singapore
| | | |
Collapse
|
9
|
Yoong LF, Wan G, Too HP. GDNF-induced cell signaling and neurite outgrowths are differentially mediated by GFRalpha1 isoforms. Mol Cell Neurosci 2009; 41:464-73. [DOI: 10.1016/j.mcn.2009.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/26/2023] Open
|
10
|
Ng WH, Wan GQ, Peng ZN, Too HP. Glial cell-line derived neurotrophic factor (GDNF) family of ligands confer chemoresistance in a ligand-specific fashion in malignant gliomas. J Clin Neurosci 2009; 16:427-36. [PMID: 19138852 DOI: 10.1016/j.jocn.2008.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 01/15/2023]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) is a neurotrophic factor known to promote neuronal survival of dopaminergic neurons in the embryonic midbrain as well as contribute to carcinogenesis in many cancers. Its ubiquitous presence in the central nervous system suggests a role in the mitogenesis of high-grade astrocytoma. GDNF is overexpressed in glioblastoma cell lines and human gliomas. GFRalpha1b is the predominant spliced receptor isoform in human gliomas and RET9 is the predominant co-receptor. Significantly there is differential overexpression of the GFRalpha1b spliced isoform compared to the GFRalpha1a spliced variant. Pre-treatment of glioblastoma cell lines with GDNF but not the alternative ligand neurturin, promoted mitogenic behaviour and conferred chemoresistance to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Signaling mapping of BCNU and GDNF suggest that the ability of GDNF to promote Akt activity and inhibit JNK activity may contribute to the increased cellular survival after BCNU chemotherapy.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Department of Biochemistry, Faculty of Medicine, National University of Singapore.
| | | | | | | |
Collapse
|
11
|
Yoong LF, Too HP. Glial cell line-derived neurotrophic factor and neurturin inhibit neurite outgrowth and activate RhoA through GFR alpha 2b, an alternatively spliced isoform of GFR alpha 2. J Neurosci 2007; 27:5603-14. [PMID: 17522305 PMCID: PMC6672776 DOI: 10.1523/jneurosci.4552-06.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) belong to a structurally related family of neurotrophic factors. NTN exerts its effect through a multicomponent receptor system consisting of the GDNF family receptor alpha2 (GFR alpha2), RET, and/or NCAM (neural cell adhesion molecule). GFR alpha2 is alternatively spliced into at least three isoforms (GFR alpha2a, GFR alpha2b, and GFR alpha2c). It is currently unknown whether these isoforms share similar functional and biochemical properties. Using highly specific and sensitive quantitative real-time PCR, these isoforms were found to be expressed at comparable levels in various regions of the human brain. When stimulated with GDNF and NTN, both GFR alpha2a and GFR alpha2c, but not GFR alpha2b, promoted neurite outgrowth in transfected Neuro2A cells. These isoforms showed ligand selectivity in MAPK (mitogen-activated protein kinase) [ERK1/2 (extracellular signal-regulated kinase 1/2)] and Akt signaling. In addition, the GFR alpha2 isoforms regulated different early-response genes when stimulated with GDNF or NTN. In coexpression studies, GFR alpha2b was found to inhibit ligand-induced neurite outgrowth by GFR alpha2a and GFR alpha2c. Stimulation of GFR alpha2b also inhibited the neurite outgrowth induced by GFR alpha1a, another member of the GFR alpha. Furthermore, activation of GFR alpha2b inhibited neurite outgrowth induced by retinoic acid and activated RhoA. Together, these data suggest a novel paradigm for the regulation of growth factor signaling and neurite outgrowth via an inhibitory splice variant of the receptor. Thus, depending on the expressions of specific GFR alpha2 receptor spliced isoforms, GDNF and NTN may promote or inhibit neurite outgrowth through the multicomponent receptor complex.
Collapse
Affiliation(s)
- Li Foong Yoong
- Department of Biochemistry, National University of Singapore, Singapore 119260, and
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore 119260, and
- Molecular Engineering of Biological and Chemical System/Chemical Pharmaceutical Engineering, Singapore–Massachusetts Institute of Technology Alliance, Singapore 117576
| |
Collapse
|
12
|
Dolatshad NF, Saffrey MJ. Differential expression of glial cell line-derived neurotrophic factor family receptor alpha-2 isoforms in rat urinary bladder and intestine. Neurosci Lett 2007; 415:215-8. [PMID: 17275188 DOI: 10.1016/j.neulet.2007.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 11/23/2022]
Abstract
Neurturin (NTN) is a member of the glial cell line-derived (GDNF) family of neurotrophic factors, which act via a receptor complex composed of a signal transducing receptor, c-Ret and a glycosylphosphatidylinositol (GPI)-linked ligand binding receptor, GFRalpha. Different members of the GDNF family bind preferentially to one of four different GFRalpha receptors; NTN binds preferentially to the GFRalpha-2 receptor. Recent evidence has shown that three alternatively spliced isoforms of GFRalpha-2 occur in rodent tissues, including the rat brain, myenteric plexus and kidney, and several mouse tissues. Here we have examined the occurrence of GFRalpha-2 isoforms in the adult male rat urinary bladder by RT-PCR, in parallel with samples from the muscularis externa of the rat ileum. In contrast to the ileum, only a single GFRalpha-2 isoform, the smallest isoform, known as GFRalpha-2c, was detected in the rat urinary bladder. This differential expression of GFRalpha-2 transcripts in bladder and intestine may be related to differences in the roles of NTN in the two tissues and its actions on the neurons that innervate them.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Department of Biological Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | | |
Collapse
|
13
|
Leong DT, Gupta A, Bai HF, Wan G, Yoong LF, Too HP, Chew FT, Hutmacher DW. Absolute quantification of gene expression in biomaterials research using real-time PCR. Biomaterials 2007; 28:203-10. [PMID: 17034848 DOI: 10.1016/j.biomaterials.2006.09.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 09/05/2006] [Indexed: 11/20/2022]
Abstract
One major measurement of tissue-engineered constructs efficacy and performance is determining expression levels of genes of interest at the molecular level. This measurement is commonly carried out with reverse transcription-polymerase chain reaction (RT-PCR). In this study, we described a novel method in achieving absolute quantification of gene expression using real-time PCR (aqPCR). This novel method did not require molecular cloning steps to prepare the standards for quantification comparison. Standards were linear double-stranded DNA molecules instead of the typical gene-in-plasmid format. aqPCR could also be used to give relative quantification comparisons between samples simply by dividing the copy numbers readings of the gene of interest with that of the normalization gene. RNA was extracted from monolayer and from polycaprolactone scaffold cultures and assayed for beta-actin and osteocalcin genes. We compared our aqPCR method with end-point PCR since end-point PCR is still a common means of measuring gene expression in the biomaterials field. This study showed that aqPCR was a better method to quantify gene expression than end-point PCR. With our described linear DNA standards method, we were able to obtain not only relative quantification of osteocalcin and beta-actin expression level but also actual copy numbers of osteocalcin and beta-actin for the monolayer culture and to be 1.34 x 10(4) and 1.45 x 10(7) copies, respectively and for the scaffold cultures to be 772 and 2.83 x 10(5) copies, respectively per starting total RNA mass of 10 ng. The standards curves made from these linear DNA standards showed good linearity (R(2)=0.9964 and 0.9902 for osteocalcin and beta-actin standards graphs), ranged from 10 to 10(9) copies and of comparable accuracy to current absolute quantification real-time PCR methods (which used plasmid standards obtained through molecular cloning methods). Our method might be a viable and more user-friendly alternative to current absolute quantification real-time PCR protocols.
Collapse
Affiliation(s)
- David Tai Leong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schueler-Furman O, Glick E, Segovia J, Linial M. Is GAS1 a co-receptor for the GDNF family of ligands? Trends Pharmacol Sci 2006; 27:72-7. [PMID: 16406089 DOI: 10.1016/j.tips.2005.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 10/27/2005] [Accepted: 12/16/2005] [Indexed: 12/31/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is a survival and maintenance factor for dopamine-containing neurons and motoneurons. GDNF belongs to a family of structurally related factors that includes neurturin (NRTN), artemin (ARTN) and persephin (PSPN). An initial step in the activation of signaling via the GDNF family of ligands (GFLs) is their binding to their cognate co-receptor GFR alpha. GAS1, an apparently unrelated protein, exhibits homology to GFR alpha and thus we hypothesize that GAS1 can serve as an alternative receptor for GFLs. The functional similarity between GFR alpha and GAS1 extends to their role in embryogenesis, differentiation and glia maintenance, and is substantiated by overlap in their expression profile, subcellular localization and structural details. We propose that the relative expression and localization of the two remote receptors, GFR alpha and GAS1, on the membranes of neuronal and glial cells determines whether these cells survive or undergo apoptotic death.
Collapse
Affiliation(s)
- Ora Schueler-Furman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|