1
|
Tyczewska M, Sujka-Kordowska P, Szyszka M, Jopek K, Blatkiewicz M, Malendowicz LK, Rucinski M. Transcriptome Profile of the Rat Adrenal Gland: Parenchymal and Interstitial Cells. Int J Mol Sci 2023; 24:ijms24119159. [PMID: 37298112 DOI: 10.3390/ijms24119159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The homeostasis of the adrenal gland plays a decisive role in its proper functioning, both in non-stressful conditions and under the influence of various types of stress. This consists of interactions between all types of cells that make up the organ, including parenchymal and interstitial cells. The amount of available information on this subject in the rat adrenal glands under non-stressful conditions is insufficient; the aim of the research was to determine the expression of marker genes for rat adrenal cells depending on their location. The material for the study consisted of adrenal glands taken from intact adult male rats that were separated into appropriate zones. Transcriptome analysis by means of Affymetrix® Rat Gene 2.1 ST Array was used in the study, followed by real-time PCR validation. Expression analysis of interstitial cell marker genes revealed both the amount of expression of these genes and the zone in which they were expressed. The expression of marker genes for fibroblasts was particularly high in the cells of the ZG zone, while the highest expression of specific macrophage genes was observed in the adrenal medulla. The results of this study, especially with regard to interstitial cells, provide a so far undescribed model of marker gene expression of various cells, both in the cortex and medulla of the sexually mature rat adrenal gland. The interdependence between parenchymal and interstitial cells creates a specific microenvironment that is highly heterogeneous within the gland with respect to some of the interstitial cells. This phenomenon most likely depends on the interaction with the differentiated parenchymal cells of the cortex, as well as the medulla of the gland.
Collapse
Affiliation(s)
- Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| |
Collapse
|
2
|
Fiory F, Mirra P, Nigro C, Pignalosa FC, Zatterale F, Ulianich L, Prevete N, Formisano P, Beguinot F, Miele C. Role of the HIF-1α/Nur77 axis in the regulation of the tyrosine hydroxylase expression by insulin in PC12 cells. J Cell Physiol 2018; 234:11861-11870. [PMID: 30536670 DOI: 10.1002/jcp.27898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022]
Abstract
Tyrosine hydroxylase (TH), catalyzing the conversion of tyrosine into l-DOPA, is the rate-limiting enzyme in dopamine synthesis. Defects in insulin action contribute to alterations of TH expression and/or activity in the brain and insulin increases TH levels in 1-methyl-4-phenylpyridinium (MPP+)-treated neuronal cells. However, the molecular mechanisms underlying the regulation of TH by insulin have not been elucidated yet. Using PC12 cells, we show for the first time that insulin increases TH expression in a biphasic manner, with a transient peak at 2 hr and a delayed response at 16 hr, which persists for up to 24 hr. The use of a dominant negative hypoxia-inducible factor 1-alpha (HIF-1α) and its pharmacological inhibitor chetomin, together with chromatin immunoprecipitation (ChIP) experiments for the specific binding to TH promoter, demonstrate the direct role of HIF-1α in the early phase. Moreover, ChIP experiments and transfection of a dominant negative of the nerve growth factor IB (Nur77) indicate the involvement of Nur77 in the late phase insulin response, which is mediated by HIF-1α. In conclusion, the present study shows that insulin regulates TH expression through HIF-1α and Nur77 in PC12 cells, supporting the critical role of insulin signaling in maintaining an appropriate dopaminergic tone by regulating TH expression in the central nervous system.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Paola Mirra
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Luca Ulianich
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Nella Prevete
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
3
|
Merino-Jiménez C, Miguel F, Feria Pliego JA, Zetina Rosales ME, Cifuentes F, Morales MA. Sympathetic Hyperactivity and Age Affect Segregation and Expression of Neurotransmitters. Front Cell Neurosci 2018; 12:411. [PMID: 30483061 PMCID: PMC6243098 DOI: 10.3389/fncel.2018.00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/22/2018] [Indexed: 01/13/2023] Open
Abstract
Sympathetic neurons of the rat superior cervical ganglion (SCG) can segregate their neurotransmitters and co-transmitters to separate varicosities of single axons. We have shown that transmitter segregation is a plastic phenomenon and that it is correlated with the strength of synaptic transmission. Here, we determined whether sympathetic dysfunction occurring in stress and hypertension was correlated with plastic changes of neurotransmitter segregation. We characterized the expression of the markers, L-glutamic acid decarboxylase of 67 kDa (GAD67) and vesicular acetylcholine (ACh) transporter (VAChT) in the SCG of cold stressed and spontaneously hypertensive rats (SHR). Considering that the SCG comprises a heterogeneous neuronal population, we explored whether the expression and segregation of neurotransmitters would also have an intraganglionic heterogeneous distribution in ganglia of stressed and hypertensive rats. Furthermore, since hypertension in SHR is detected around 8–10 weeks, we evaluated expression and segregation of ACh and GABA in adult hypertensive (12-week old (wo)) and young pre-hypertensive (6-wo) SHR. We found an increase in segregation of ACh and GABA with no change in transmitter expression in ganglia of stressed animals. In contrast, in SHR, there was an increase in GABA expression, although segregation did not vary. Segregation showed a caudo-rostral gradient in controls but not in the ganglia of stressed animals. GABA expression showed a rostro-caudal gradient in adult SHR, which was not present in young 6-wo rats. In young SHR, ACh increased and, unexpectedly, segregation of ACh and GABA was higher than in adults. Data suggest that ACh and GABA segregation increases in acute sympathetic hyperactivity like stress, but does not vary in chronic hyperactivity such as in hypertension. Changes in segregation are age-dependent and might be involved in the mechanisms underlying stress and hypertension.
Collapse
Affiliation(s)
- Candelaria Merino-Jiménez
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Filiberto Miguel
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jessica Abigail Feria Pliego
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Elena Zetina Rosales
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Fredy Cifuentes
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Angel Morales
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
4
|
Nostramo R, Serova L, Laukova M, Tillinger A, Peddu C, Sabban EL. Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. Am J Physiol Regul Integr Comp Physiol 2015; 308:R517-29. [DOI: 10.1152/ajpregu.00130.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The involvement of the nonclassical renin-angiotensin system (RAS) in the adrenomedullary response to stress is unclear. Therefore, we examined basal and immobilization stress (IMO)-triggered changes in gene expression of the classical and nonclassical RAS receptors in the rat adrenal medulla, specifically the angiotensin II type 2 (AT2) and type 4 (AT4) receptors, (pro)renin receptor [(P)RR], and Mas receptor (MasR). All RAS receptors were identified, with AT2 receptor mRNA levels being the most abundant, followed by the (P)RR, AT1A receptor, AT4 receptor, and MasR. Following a single IMO, AT2 and AT4 receptor mRNA levels decreased by 90 and 50%, respectively. Their mRNA levels were also transiently decreased by repeated IMO. MasR mRNA levels displayed a 75% transient decrease as well. Conversely, (P)RR mRNA levels were increased by 50% following single or repeated IMO. Because of its abundance, the function of the (P)RR was explored in PC-12 cells. Prorenin activation of the (P)RR increased phosphorylation of extracellular signal-regulated kinase 1/2 and tyrosine hydroxylase at Ser31, likely increasing its enzymatic activity and catecholamine biosynthesis. Together, the broad and dynamic changes in gene expression of the nonclassical RAS receptors implicate their role in the intricate response of the adrenomedullary catecholaminergic system to stress.
Collapse
Affiliation(s)
- Regina Nostramo
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Marcela Laukova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Chandana Peddu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Esther L. Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
5
|
Papanikolaou NA, Tillinger A, Liu X, Papavassiliou AG, Sabban EL. A systems approach identifies co-signaling molecules of early growth response 1 transcription factor in immobilization stress. BMC SYSTEMS BIOLOGY 2014; 8:100. [PMID: 25217033 PMCID: PMC4363937 DOI: 10.1186/s12918-014-0100-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/13/2014] [Indexed: 11/10/2022]
Abstract
Background Adaptation to stress is critical for survival. The adrenal medulla, the major source of epinephrine, plays an important role in the development of the hyperadenergic state and increased risk for stress associated disorders, such as hypertension and myocardial infarction. The transcription factor Egr1 plays a central role in acute and repeated stress, however the complexity of the response suggests that other transcription factor pathways might be playing equally important roles during acute and repeated stress. Therefore, we sought to discover such factors by applying a systems approach. Results Using microarrays and network analysis we show here for the first time that the transcription factor signal transducer and activator of transcription 3 (Stat3) gene is activated in acute stress whereas the prolactin releasing hormone (Prlh11) and chromogranin B (Chgb) genes are induced in repeated immobilization stress and that along with Egr1 may be critical mediators of the stress response. Conclusions Our results suggest possible involvement of Stat3 and Prlh1/Chgb up-regulation in the transition from short to repeated stress activation.
Collapse
Affiliation(s)
- Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Hellas (Greece).
| | - Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA. .,Current Address: Clyde and Helen Wu Center of Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, 11527, Athens, Hellas (Greece).
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
6
|
Serova LI, Laukova M, Alaluf LG, Sabban EL. Intranasal infusion of melanocortin receptor four (MC4R) antagonist to rats ameliorates development of depression and anxiety related symptoms induced by single prolonged stress. Behav Brain Res 2013; 250:139-47. [PMID: 23680165 DOI: 10.1016/j.bbr.2013.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
Brain melanocortinergic systems and specifically melanocortin receptor four (MC4R) are implicated in modulation of anxiety- and depressive-like behavior induced by mild or moderate stress. Here we examine whether blockage of central MC4Rs with HS014 before severe traumatic stress may protect against development of anxiety and depression co-morbid with post-traumatic stress disorder (PTSD). Male rats were treated intranasally (IN) with vehicle or varied doses of HS014, 30min prior to single prolonged stress (SPS) animal model of PTSD. IN administration of 100μg HS014 pre-SPS improved despair behavior in forced swim (FS) immediately after immobilization stress part of SPS protocol. During all 4 intervals of 20min FS these rats spent less time immobile than rats given vehicle or 3.5ng HS014. This dose of HS014 also had a long-term beneficial effect manifested as reduction of immobility time in forced swim test performed after SPS. However, both HS014 doses were effective in ameliorating development of anxiety-like behavior after traumatic stress. Thus, rats given IN HS014 prior to SPS exhibited less open arms (OA) visits in elevated plus maze (EPM), spent longer time in OA and less in closed arms, had lower anxiety index, higher risk assessment and more head dips over borders in OA. They also spent longer time in the center of the open field and defecated less. Reduced grooming behavior in EPM was observed with 100μg HS014. This is the first study revealing pronounced resilience effects of HS014 on development of behavioral symptoms co-morbid with PTSD.
Collapse
Affiliation(s)
- Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
7
|
Serova L, Tillinger A, Alaluf L, Laukova M, Keegan K, Sabban E. Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 2013; 236:298-312. [DOI: 10.1016/j.neuroscience.2013.01.040] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/19/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
|
8
|
Stress-triggered changes in peripheral catecholaminergic systems. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:359-97. [PMID: 24054153 DOI: 10.1016/b978-0-12-411512-5.00017-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sympathetic nervous system not only regulates cardiovascular and metabolic responses to stress but also is altered by stress. The sympathoneural and sympathoadrenomedullary systems are modified by different metabolic pathways and have different responses to short- and to long-term stressors. Stress also induces nonneuronal catecholamine enzymes, primarily through corticosteroids. Catecholamine synthetic enzymes are induced by different pathways in response to short- and long-term acting stressors, like cold exposure or immobilization, and differently in the sympathetic ganglia and the adrenal medulla. However, a long-term exposure to one stressor can increase the response to a second, different stressor. Tyrosine hydroxylase gene transcription increases after only 5min of immobilization through phosphorylation of CREB, but this response is short lived. However, repeated stress gives a longer-lived response utilizing transcription factors such as Egr-1 and Fra-2. Glucocorticoids and ACTH also induce sympathoneural enzymes leading to distinct patterns of short-term and long-lived activation of the sympathetic nervous system. Nonneuronal phenylethanolamine N-methyltransferase (PNMT) develops early in the heart and then diminishes. However, intrinsic cardiac adrenergic cells remain and nonneuronal PNMT is present in many cells of the adult organism and increases in response to glucocorticoids. Both stress-induced and administered glucocorticoids induce fetal PNMT and hypertension. Human stressors such as caring for an ill spouse or sleep apnea cause a persistent increase in blood norepinephrine, increased blood pressure, and downregulated catecholamine receptors. Hypertension is associated with a loss of slow-wave sleep, when sympathetic nerve activity is lowest. These findings indicate that stress-induced alteration of the sympathetic nervous system occurs in man as in experimental animals.
Collapse
|
9
|
Liu X, Betzenhauser MJ, Reiken S, Meli AC, Xie W, Chen BX, Arancio O, Marks AR. Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 2012; 150:1055-67. [PMID: 22939628 DOI: 10.1016/j.cell.2012.06.052] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 12/13/2022]
Abstract
The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nostramo R, Tillinger A, Saavedra JM, Kumar A, Pandey V, Serova L, Kvetnansky R, Sabban EL. Regulation of angiotensin II type 2 receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. J Endocrinol 2012; 215:291-301. [PMID: 22911895 PMCID: PMC3474336 DOI: 10.1530/joe-12-0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the renin-angiotensin system is important for adrenomedullary responses to stress, the involvement of specific angiotensin II (Ang II) receptor subtypes is unclear. We examined gene expression changes of angiotensin II type 1A (AT(1A)) and type 2 (AT(2)) receptors in rat adrenal medulla in response to immobilization stress (IMO). AT(2) receptor mRNA levels decreased immediately after a single 2-h IMO. Repeated IMO also decreased AT(2) receptor mRNA levels, but the decline was more transient. AT(1A) receptor mRNA levels were unaltered with either single or repeated IMO, although binding was increased following repeated IMO. These effects of stress on Ang II receptor expression may alter catecholamine biosynthesis, as tyrosine hydroxylase and dopamine β-hydroxylase mRNA levels in PC12 cells are decreased with Ang II treatment in the presence of ZD7155 (AT(1) receptor antagonist) or with CGP42112 (AT(2) receptor agonist) treatment. Involvement of stress-triggered activation of the hypothalamic-pituitary-adrenocortical or sympathoadrenal axis in AT(2) receptor downregulation was examined. Cultured cells treated with the synthetic glucocorticoid dexamethasone displayed a transcriptionally mediated decrease in AT(2) receptor mRNA levels. However, glucocorticoids are not required for the immediate stress-triggered decrease in AT(2) receptor gene expression, as demonstrated in corticotropin-releasing hormone knockout (Crh KO) mice and hypophysectomized rats, although they can regulate basal gene expression. cAMP and pituitary adenylate cyclase-activating polypeptide also reduced AT(2) receptor gene expression and may mediate this response. Overall, the effects of stress on adrenomedullary AT(1A) and AT(2) receptor expression may contribute to allostatic changes, such as regulation of catecholamine biosynthesis.
Collapse
MESH Headings
- Adrenal Medulla/metabolism
- Animals
- Catecholamines/genetics
- Catecholamines/metabolism
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/metabolism
- Gene Expression Regulation
- Immobilization/physiology
- Male
- Mice
- Mice, Knockout
- PC12 Cells
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Regina Nostramo
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Juan M. Saavedra
- Section of Pharmacology, DIRP, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Ashok Kumar
- Department of Pathology, New York Medical College, Valhalla, New York 10595, USA
| | - Varunkumar Pandey
- Department of Pathology, New York Medical College, Valhalla, New York 10595, USA
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Esther L. Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| |
Collapse
|
11
|
Sabban EL, Tillinger A, Nostramo R, Serova L. Stress triggered changes in expression of genes for neurosecretory granules in adrenal medulla. Cell Mol Neurobiol 2012; 32:795-800. [PMID: 22198558 PMCID: PMC11498449 DOI: 10.1007/s10571-011-9785-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
Abstract
With acute stress, the release of adrenomedullary catecholamines is important for handling the emergency situation. However, when chronic or repeated, stress alters the allostatic load and leads to a hyperadrenergic state, resulting in the development or worsening of a wide range of diseases. To help elucidate the mechanism, we examined the effects of single and repeated immobilization stress on gene expression of components of neurosecretory vesicles in the adrenal medulla. Male Sprague-Dawley rats were exposed to immobilization stress once for 2 h (1× IMO) or daily for six consecutive days (6× IMO). Compared to unstressed controls, 1× IMO elevated gene expression of vesicular monoamine transporter 2 (VMAT2). In response to 6× IMO, not only was VMAT2 mRNA still elevated, but chromogranin A (CgA) and chromogranin B (CgB) mRNAs were also increased two to three-fold above basal levels. To investigate the possible role of the hypothalamic-pituitary-adrenal axis in the induction of VMAT2, PC12 cells were treated with the synthetic glucocorticoid dexamethasone, which was found to elevate VMAT2 mRNA expression. The findings suggest that following repeated stress, elevations of various components of neurosecretory vesicles in the adrenal can facilitate more efficient utilization of the well-characterized heightened catecholamine levels.
Collapse
Affiliation(s)
- Esther Louise Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
12
|
Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL. Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 2010; 30:1459-65. [PMID: 21046458 PMCID: PMC11498772 DOI: 10.1007/s10571-010-9575-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/02/2010] [Indexed: 11/28/2022]
Abstract
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.
Collapse
Affiliation(s)
- Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY USA
| | - Anne Sollas
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY USA
| | - Lidia I. Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY USA
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Esther L. Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY USA
| |
Collapse
|
13
|
Zhang K, Zhang L, Rao F, Brar B, Rodriguez-Flores JL, Taupenot L, O'Connor DT. Human tyrosine hydroxylase natural genetic variation: delineation of functional transcriptional control motifs disrupted in the proximal promoter. ACTA ACUST UNITED AC 2010; 3:187-98. [PMID: 20124442 DOI: 10.1161/circgenetics.109.904813] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known. METHODS AND RESULTS Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5' linkage disequilibrium block in white, black, Hispanic, and Asian populations. Polymorphisms C-824T and A-581G were located in highly conserved regions and were predicted to disrupt known transcriptional control motifs myocyte enhancer factor-2 (MEF2), sex-determining region Y (SRY), and forkhead box D1 (FOXD1) at C-824T and G/C-rich binding factors specificity protein 1 (SP1), activating enhancer-binding protein 2 (AP2)], early growth response protein 1 (EGR1) at A-581G. At C-824T and A-581G, promoter and luciferase reporter plasmids indicated differential allele strength (T>C at C-824T; G>A at A-581G) under both basal circumstances and secretory stimulation. C-824T and A-581G displayed the most pronounced effects on both transcription in cella and catecholamine secretion in vivo. We further probed the functional significance of C-824T and A-581G by cotransfection of trans-activating factors in cella; MEF2, SRY, and FOXD1 differentially activated C-824T, whereas the G/C-rich binding factors SP1, AP2, and EGR1 differentially activated A-581G. At C-824T, factor MEF2 acted in a directionally coordinate fashion (at T>C) to explain the in vivo trait associations, whereas at A-581G, factors SP1, AP2, and EGR1 displayed similar differential actions (at G>A). Finally, chromatin immunoprecipitation demonstrated that the endogenous factors bound to the motifs in cella. CONCLUSIONS We conclude that common genetic variants in the proximal TH promoter, especially at C-824T and A-581G, are functional in cella and alter transcription so as to explain promoter marker-on-trait associations in vivo. MEF2, FOXD1, and SRY contribute to functional differences in C-824T expression, whereas SP1, AP2, and EGR1 mediate those of A-581G. The SRY effect on TH transcription suggests a mechanism whereby male and female sex may differ in sympathetic activity and hence blood pressure. These results point to new strategies for diagnostic and therapeutic intervention into disorders of human autonomic function and their cardiovascular consequences.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine and Pharmacology, Center for Human Genetics and Genomics, University of California at San Diego, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
KAUR R, JAGGI AS, SINGH N. Studies on Effect of Stress Preconditioning in Restrain Stress-induced Behavioral Alterations. YAKUGAKU ZASSHI 2010; 130:215-21. [DOI: 10.1248/yakushi.130.215] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rajneet KAUR
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| | | | - Nirmal SINGH
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| |
Collapse
|
15
|
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009; 89:535-606. [PMID: 19342614 DOI: 10.1152/physrev.00042.2006] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
16
|
Liu X, Serova L, Kvetnansky R, Sabban EL. Identifying the stress transcriptome in the adrenal medulla following acute and repeated immobilization. Ann N Y Acad Sci 2008; 1148:1-28. [PMID: 19120088 PMCID: PMC2785127 DOI: 10.1196/annals.1410.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stress triggers changes in gene expression mediating important adaptive and maladaptive responses. The full repertoire of genes whose expression in the adrenal medulla is altered by stress has not been previously determined. In this study, gene profiling (RAE 230 2.0 Affymetrix) was applied to elucidate global changes in gene expression in adrenal medulla of rats exposed to 2-h immobilization (IMO) stress once or repeatedly for 6 consecutive days. The number of transcripts significantly (P < 0.01) altered with single IMO (651 up, 487 down) was more than with repeated IMO (370 up, 195 down). The annotated transcripts were further analyzed and categorized. The largest numbers of changes were in mRNA levels in the transcription factor and cell signaling categories. Robust changes were also observed in transcripts related to growth factors, apoptosis, neurosecretion/neuropeptides, heat shock proteins, structural proteins, chemokines, cytokines, metabolism/lipid-metabolism, and proteases. Many (>80%) were uniquely induced by single IMO. About half of transcripts changed by repeated IMO were also responsive to single IMO. Pathway analysis was applied to identify direct interactions and common targets among gene products altered by single and repeated IMO. In this paper, we briefly describe the most pronounced changes observed, with emphasis on those that may provide new insight into the common and distinct mechanisms whereby the adrenal medulla responses to a first encounter with stress compared to repeated exposure to the same stressor.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Esther L. Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
17
|
Cheng SY, Serova LI, Glazkova D, Sabban EL. Regulation of rat dopamine beta-hydroxylase gene transcription by early growth response gene 1 (Egr1). Brain Res 2008; 1193:1-11. [PMID: 18190898 PMCID: PMC2366081 DOI: 10.1016/j.brainres.2007.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/30/2007] [Accepted: 11/26/2007] [Indexed: 01/13/2023]
Abstract
Egr1, a transcription factor rapidly induced by various stimuli including stress, can elevate transcription of genes for the catecholamine biosynthetic enzymes TH and PNMT. To examine if Egr1 also regulates dopamine beta-hydroxylase (DBH) gene expression, PC12 cells were transfected with expression vector for full length or truncated inactive Egr1 and various DBH promoter-driven luciferase constructs. While Egr1 elevated TH promoter activity, DBH promoter activity was reduced. The reduction occurred as early as 4 h and reached maximal inhibition 16-40 h after transfection. Egr1 also reduced the expression of endogenous DBH mRNA and the induction of DBH promoter activity by cAMP. These effects were not observed with truncated Egr1 lacking the DNA binding domain. The first 247, but not 200, nucleotides of DBH promoter are sufficient for this suppression. Several putative Egr1 motifs were identified, and mutagenesis showed that the motif at -227/-224 is required. Binding of Egr1 to this region of the DBH promoter was verified by chromatin immunoprecipitation and electrophoretic mobility shift assays. This study demonstrates that DBH promoter contains at least one functional Egr1 motif; and indicates, for the first time, that Egr1 can play an inhibitory role in regulation of DBH gene transcription.
Collapse
Affiliation(s)
- Shu-Yuan Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
18
|
Abstract
It is well known that environmental factors, such as early life events, perinatal damage, and urbanicity, which interact with multiple genes, induces persistent sensitization to stress possibly through an imbalance in interactions between dopaminergic and glutamatergic systems. This stress sensitization may be critical in the development or relapse of schizophrenia. The neural correlates of a negative mood might be impaired, resulting in stress sensitization and difficulties in social adjustment (Dr. Habel). Urbanicity is associated with later schizophrenia. Metabolic stress induces stress sensitization via dysregulation of dopaminergic and/or noradrenergic systems in activated HVA and cortical response (Dr. Marcelis). The glutamatergic regulation activates HPA axis in stress response (Dr. Zelena). Ameloblast activity in human molar's enamel slowed by exposure to stress, and the segment of enamel rods is smaller, making a particular dark line. Stress sensitization may be induced at the age of 10.5 to 11.5 years resulting from severe emotional stress at the age of 10.5 to 11.5 years (Dr. Yui). It has been reported that volume reductions in the amygdala, hippocampus, superior temporal gyrus, and anterior parietal cortex common to both patient groups may represent the vulnerability to schizophrenia, while volume loss of the prefrontal cortex, posterior parietal cortex, cingulate, insula, and fusiform cortex preferentially observed in schizophrenia may be critical for overt manifestation of psychosis (Dr. Suzuki).
Collapse
Affiliation(s)
- Kunio Yuii
- Research Institute of Asperger Disorder, Ahiya University Graduate School of Education. Rokurokuso-Machi 13-22, Ashiya, 659-8511 Hyogo, Japan
| | | | | |
Collapse
|
19
|
Sabban EL, Serova LI. Influence of prior experience with homotypic or heterotypic stressor on stress reactivity in catecholaminergic systems. Stress 2007; 10:137-43. [PMID: 17514582 DOI: 10.1080/10253890701404078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Here we review how prior experience with stress alters the response to a subsequent homotypic or heterotypic stressor, focusing on the catecholaminergic systems in the adrenal medulla and the locus coeruleus (LC). The changes in response to homotypic stress differ depending on the stressor applied. With immobilization stress (IMO), transcriptional responses in the adrenal medulla to a single exposure are pronounced and several of the transcription factors and signaling kinases induced or activated are reviewed and compared to the longer term alterations with repeated stress, consistent with persistent activation of gene expression of catecholamine (CA) biosynthetic enzymes. In the LC, transcriptional and post-transcriptional activation of gene expression are shown to be important. Repeated IMO stress triggers further activation of a number of signalling pathways. Neither adrenal medulla nor LC display habituation to long term repeated stress. In contrast, gene expression for CA biosynthetic enzymes habituates to prolonged cold stress in the adrenal medulla and LC, but displays an exaggerated response with exposure to a novel or heterotypic stressor such as IMO. Some of the transcriptional pathways displaying sensitization are described.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA.
| | | |
Collapse
|
20
|
Abstract
This essay describes the evolution of stress as a medical scientific idea. Claude Bernard, Walter B. Cannon and Hans Selye provided key founding concepts for the current view. Bernard introduced the idea of the internal environment bathing cells - the milieu intérieur - maintained by continual compensatory changes of bodily functions. Cannon coined the word, "homeostasis," referring to a set of acceptable ranges of values for internal variables. Cannon taught that threats to homeostasis evoke activation of the sympathoadrenal system as a functional unit. Selye defined stress as a state characterized by a uniform response pattern, regardless of the particular stressor, that could lead to long-term pathologic changes. "Allostasis" was introduced as a concept in recognition that there is no single ideal set of steady-state conditions in life; instead, setpoints and other response criteria change continuously. Stress is now viewed neither as a perturbation nor a stereotyped response pattern but as a condition characterized by a perceived discrepancy between information about a monitored variable and criteria for eliciting patterned effector responses. Different stressors elicit different patterns of activation of the sympathetic nervous, adrenomedullary hormonal, hypothalamic-pituitary-adrenocortical and other effectors, closing negative feedback loops. This systems concept of stress yields predictions that observation or experimentation can test and that are applicable to normal physiology and to a variety of acute and chronic disorders.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-1620, USA.
| | | |
Collapse
|
21
|
Sabban EL, Liu X, Serova L, Gueorguiev V, Kvetnansky R. Stress triggered changes in gene expression in adrenal medulla: transcriptional responses to acute and chronic stress. Cell Mol Neurobiol 2006; 26:845-56. [PMID: 16691439 PMCID: PMC11520602 DOI: 10.1007/s10571-006-9069-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 03/24/2006] [Indexed: 02/02/2023]
Abstract
1. Stress elicits activation of several transcription factors involved in the regulation of catecholamine biosynthetic enzyme gene expression depending on its duration or repetition. However, the dynamic of the conversion of transient transcriptional activation with acute stress to sustained changes in transcription in response to repeated exposure to stress in adrenomedullary catecholaminergic systems is not clear. 2. Here, we analyzed changes in levels of phospho-CREB (P-CREB), phospho-ERK1/2 (P-ERK1/2) and Fra-2 by Western Blot analysis in adrenal medulla of Sprague Dawley male rats exposed to single or repeated immobilization stress (IMO). For single stress, rats were immobilized for 5 min, 30 min, or 2 h and sacrificed immediately afterwards. In the repeated stress conditions, animals were immobilized for 2 h daily on each consecutive day prior to the final day (day 2 for 2x IMO, day 6 for 6x IMO) in which the rats were immobilized for a session lasting 5 min, 30 min or 2 h. There were two control groups, an absolute control (AC) not exposed to stress, and a handled control (HC) gently handled daily for 6 days. 3. Phosphorylation of CREB was rapid and elevated at the earliest time examined, even with single stress. However, with a second daily episode of stress the increase in P-CREB was observed for at least the entire duration of the stress. In contrast, phosphorylation of ERK1/2 was only significant after brief exposure to a single IMO. The elevation of Fra-2 protein level was slower, but was significant after 2 h of a single IMO. With repeated IMO, there were marked elevations of Fra-2 throughout the 2 h IMO, which were especially pronounced at the end of the immobilization. 4. The transient nature of the phosphorylation of CREB may be responsible for the short-lived induction of transcription of catecholamine biosynthetic enzymes after brief exposure to a single immobilization stress. The sustained phosphorylation of CREB throughout the repeated stress coupled with induction of Fra-2 may mediate the longer lasting responses to repeated stress.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|