1
|
Irfan M, Jeshurun A, Mallikharjuna Reddy B. Microwave-assisted synthesis of dual responsive luminomagnetic rare earth metal ions (Nd 3+, Dy 3+) co-doped nanohydroxyapatite for biomedical applications. Dalton Trans 2025; 54:3774-3795. [PMID: 39871604 DOI: 10.1039/d4dt02664k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The existing demand for the development of innovative multimodal imaging nanomaterial probes for biomedical applications stems from their unique combination of dual response modalities, i.e., photoluminescence (PL) and magnetic resonance imaging (MRI). In this study, for the first time, neodymium (Nd3+) and dysprosium (Dy3+) rare earth (RE) metal ions were co-doped into a hydroxyapatite (HAp) crystal lattice using a simple microwave-assisted synthesis technique to incorporate the essential properties of both the lanthanides in HAp. Theoretical as well as experimental studies were performed on novel Nd:Dy:HAp nanoparticles (NPs) to understand their photoluminescence and magnetic behaviour. Through co-precipitation, RE (Nd3+, Dy3+) ions were effectively integrated into the HAp crystal lattice, where they preferentially occupied the calcium ion (Ca2+) sites. The as-synthesized HAp, Nd:HAp, Dy:HAp, and Nd:Dy:HAp samples were characterized using different analytical tools. The PL and magnetic characteristics of Nd:Dy:HAp were dependent on the RE dopant ion type and concentration. In comparison with the pure HAp, the RE co-doped (Nd:Dy:HAp) NPs displayed multimodal features due to efficient energy transfer from the Nd3+ (sensitizer) to the Dy3+ (activator) ions. Furthermore, Nd:Dy:HAp NPs had good antimicrobial properties and they also displayed low cell toxicity effects. Hence, Nd:Dy:HAp NPs are attractive biomaterials for PL and MRI applications (e.g. permanent bone and tooth implants) and they can effectively be utilized in the biomedical industry for target-specific drug delivery, bioimaging, functional antimicrobial coatings etc. due to their tunable PL, magnetic, antimicrobial, and biocompatible capabilities.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, AP, 517619, India.
| | - Ashok Jeshurun
- Department of Mechanical Engineering, Indian Institute of Technology Madras, TN, 600036, India
| | - Bogala Mallikharjuna Reddy
- Center for Research, Innovation, Development, and Applications (CRIDA), Jaiotec Labs (OPC) Private Limited, Amaravati, AP, 522503, India
| |
Collapse
|
2
|
Shafiq F, Liu C, Zhou H, Chen H, Yu S, Qiao W. Stearic acid-modified hollow hydroxyapatite particles with enhanced hydrophobicity for oil adsorption from oil spills. CHEMOSPHERE 2024; 348:140651. [PMID: 37995975 DOI: 10.1016/j.chemosphere.2023.140651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Oil spills lead to a substantial depletion of aquatic biodiversity. The mitigation of an oil spill can entail considerable financial outlays, give rise to consequential environmental impacts, and present formidable operational complexities. In this research, hollow hydroxyapatite particles with enhanced oil adsorption characteristics were prepared by surface modification with stearic acid. Peanut and vacuum pump oils were used to imitate oil spills and conduct adsorption tests. The 50% stearic acid-modified hydroxyapatite (Sa/HAP) adsorbent showed superior hydrophobic properties with respect to water contact angle data. Adsorption isotherm analysis revealed that the adsorption processes of peanut and vacuum pump oils matched well with the Sips isotherm model, with regression coefficients of 0.992 and 0.996, respectively. The oil adsorption by the modified hydroxyapatite (HAP) adsorbent was found to be 9.85 g·g-1 for peanut oil and 12.13 g·g-1 for vacuum pump oil. Furthermore, the adsorption kinetics performance was determined by chemical interaction, whereas the adsorption equilibrium capacities were 8.97 g·g-1 and 11.41 g·g-1, respectively. Recycling of the spent adsorbent was performed with toluene stripping. The synthesized oil-adsorbents were analyzed by SEM, FTIR, XRD, contact angle, and TGA analyses. Hence, the efficacy of the Sa/HAP material as a potential adsorbent for the purification of oil-contaminated water was established, attributed to its commendable oil adsorption capability.
Collapse
Affiliation(s)
- Farishta Shafiq
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
3
|
Goldberg MA, Antonova OS, Donskaya NO, Fomin AS, Murzakhanov FF, Gafurov MR, Konovalov AA, Kotyakov AA, Leonov AV, Smirnov SV, Obolkina TO, Kudryavtsev EA, Barinov SM, Komlev VS. Effects of Various Ripening Media on the Mesoporous Structure and Morphology of Hydroxyapatite Powders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:418. [PMID: 36770379 PMCID: PMC9919035 DOI: 10.3390/nano13030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Mesoporous hydroxyapatite (HA) materials demonstrate advantages as catalysts and as support systems for catalysis, as adsorbent materials for removing contamination from soil and water, and as nanocarriers of functional agents for bone-related therapies. The present research demonstrates the possibility of the enlargement of the Brunauer-Emmett-Teller specific surface area (SSA), pore volume, and average pore diameter via changing the synthesis medium and ripening the material in the mother solution after the precipitation processes have been completed. HA powders were investigated via chemical analysis, X-ray diffraction analysis, Fourier-transform IR spectroscopy, transmission electron microscopy (TEM), and scanning (SEM) electron microscopy. Their SSA, pore volume, and pore-size distributions were determined via low-temperature nitrogen adsorption measurements, the zeta potential was established, and electron paramagnetic resonance (EPR) spectroscopy was performed. When the materials were synthesized in water-ethanol and water-acetone media, the SSA and total pore volume were 52.1 m2g-1 and 116.4 m2g-1, and 0.231 and 0.286 cm3g-1, respectively. After ripening for 21 days, the particle morphology changed, the length/width aspect ratio decreased, and looser and smaller powder agglomerates were obtained. These changes in their characteristics led to an increase in SSA for the water and water-ethanol samples, while pore volume demonstrated a multiplied increase for all samples, reaching 0.593 cm3g-1 for the water-acetone sample.
Collapse
Affiliation(s)
- Margarita A. Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga S. Antonova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda O. Donskaya
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander S. Fomin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Fadis F. Murzakhanov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Anatoliy A. Konovalov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Artem A. Kotyakov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander V. Leonov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey V. Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana O. Obolkina
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Egor A. Kudryavtsev
- Joint Research Center of Belgorod State National Research University «Technology and Materials», Belgorod State National Research University, Pobedy Str., 85, Belgorod 308015, Russia
| | - Sergey M. Barinov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
4
|
Saito K, Kagawa S, Ogasawara M, Kato S. Multiple incorporation of copper and iron ions into the channel of hydroxyapatite. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Smith S, ElKashty O, Tamimi F, Tran SD, Cerruti M. Titanium-Containing Silicate-Based Sol-Gel Bioactive Glass: Development, Characterization, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14243-14253. [PMID: 34860533 DOI: 10.1021/acs.langmuir.1c01593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive glasses are surface-reactive glasses that, when placed in physiological fluid, undergo a transformation from glass to hydroxyapatite. Doping the bioactive glass with metallic ions can impart desirable and unique properties that are not inherent to natural hydroxyapatite. Once such ion is titanium. Titanium exists in trace amounts in native dental enamel, and its presence has been correlated with increased tooth hardness and brightness, both desirable clinical properties. Synthetic titanium-substituted hydroxyapatite exhibits better mechanical and antibacterial properties and demonstrates potential for an improved cellular response when compared to unmodified hydroxyapatite with applications in the broader field of bone tissue engineering. In this work, we use the sol-gel method to synthesize a titanium-containing silicate-based bioactive glass aimed at generating titanium-substituted hydroxyapatite on the glass surface upon immersion in body fluid. Titanium is homogeneously distributed throughout our glass, which keeps its amorphous nature. After 14 days of immersion in simulated body fluid, the glass forms a titanium-substituted hydroxyapatite on its surface. Enamel surfaces treated with the titanium-containing glass show significantly increased microhardness compared to enamel surfaces treated with a control glass, confirming the potential for the proposed glass in enamel remineralization. We also show that the presence of titanium in the glass promotes cell differentiation toward bone formation, suggesting further applications for this material in the broader field of bone tissue engineering.
Collapse
Affiliation(s)
- Sophia Smith
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 2T5, Canada
| | - Osama ElKashty
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2T5, Canada
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2T5, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2T5, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 2T5, Canada
| |
Collapse
|
6
|
Alorku K, Manoj M, Yanjuan C, Zhou H, Yuan A. Nanomixture of 0-D ternary metal oxides (TiO 2- SnO 2-Al 2O 3) cooperating with 1-D hydroxyapatite (HAp) nanorods for RhB removal from synthetic wastewater and hydrogen evolution via water splitting. CHEMOSPHERE 2021; 273:128575. [PMID: 33268099 DOI: 10.1016/j.chemosphere.2020.128575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
This work was carried out to devise a feasible alternative to remove cationic dyes from industrial wastewater. A nanomixture of (TiO2-SnO2-Al2O3) cooperating with Hydroxyapatite (HAp) nanorods was synthesized in this regard as a catalyst to degrade Rhodamine B (RhB) dye from aqueous medium. The physicochemical properties of the hydrothermally prepared Hydroxyapatite Nano Mixture (HNM) were revealed through XRD, FESEM, TEM, XPS, FTIR, BET-BHJ, UV-Vis, and Raman spectroscopy techniques. The synthesized material which was found to be nanorods of average crystallite size 12.53 nm and BET Specific Surface area 60.81 m2 g-1 proved to be very effective for the removal of RhB at various pH conditions (acid, basic, and neutral). Maximum removal of 97% was achieved within 30 min of UV irradiation using 5 ppm RhB in acidic medium while at a higher concentration (20 ppm), it takes just 90 min to achieve 98% degradation of RhB under the same reaction conditions. A further catalytic potential of the prepared nanomixture for hydrogen (H2) evolution via water splitting was explored where 129.45 μmol g-1 of H2 was evolved within 60 min. Our findings suggest that the prepared nanomixture could be used as an efficient catalyst for removing spent dyes used in industrial processes and also as a catalyst for hydrogen gas production.
Collapse
Affiliation(s)
- Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, PR China
| | - M Manoj
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, PR China.
| | - Cui Yanjuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, PR China
| | - Hu Zhou
- School of Material Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, PR China.
| |
Collapse
|
7
|
Srinivasan B, Kolanthai E, Asthagiri Kumaraswamy NE, Pugazhendhi AS, Catalani LH, Subbaraya NK. Vacancy-Induced Visible Light-Driven Fluorescence in Toxic Ion-Free Resorbable Magnetic Calcium Phosphates for Cell Imaging Applications. ACS APPLIED BIO MATERIALS 2021; 4:3256-3263. [PMID: 35014412 DOI: 10.1021/acsabm.0c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multifunctional nanosized particles are very beneficial in the field of biomedicine. Bioactive and highly biocompatible calcium phosphate (CaP) nanoparticles (∼50 nm) exhibiting both superparamagnetic and fluorescence properties were synthesized by incorporating dual ions (Fe3+ and Sr2+) in HAp (hydroxyapatite) [Ca10(PO4)6(OH)2]. Insertion of Fe3+ creates oxygen vacancies at the PO43- site, thereby destabilizing the structure. Thus, in order to maintain the structural stability, Sr2+ has been incorporated. This incorporation of Sr2+ leads to an intense emission at 550 nm. HAp nanoparticles when subjected to thermal treatment (800 °C) transform to β-TCP, exhibiting emission at 710 nm due to the emergence of an intermediate band. Moreover, these nanoparticles exhibit fluorescence in visible light when compared to the other UV and IR fluorescence excitation sources which could damage the tissues. The synthesis involving the combination of ultrasound and microwave techniques resulted in the distribution of Fe3+ in the interstitial sites of CaP, which is responsible for the excellent fluorescent properties. Moreover, thermally treated CaP becomes superparamagnetic, without affecting the desired optical properties. The bioactive, biocompatible, magnetic, and fluorescent properties of this resorbable CaP which is free from toxic heavy metals (Eu, Gd, etc.) could help in overcoming the long-term cytotoxicity. This could also be useful in tracking the location of the nanoparticles during drug delivery and magnetic hyperthermia. The bioactive fluorescent CaP nanoparticle helps in monitoring the bone growth and in addition, it could be employed in cell imaging applications. The in vitro MCF-7 imaging using the nanoparticles after 24 h of uptake at 465 nm evidences the bioimaging capability of the prepared nanoparticles. The reproducibility of the defect level is essential for the defect-induced emission properties. The synthesis of nontoxic fluorescent CaP is highly reproducible with the present synthesis method. Hence, it could be safely employed in various biomedical applications.
Collapse
Affiliation(s)
- Baskar Srinivasan
- Crystal Growth Centre, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Elayaraja Kolanthai
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil.,Department of Materials Science & Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando 32816, Florida, USA
| | | | - Abinaya Sindu Pugazhendhi
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil
| | | |
Collapse
|
8
|
Iron Oxide/Phosphatic Materials Composites with Potential Applications in Environmental Protection. MATERIALS 2020; 13:ma13215034. [PMID: 33171673 PMCID: PMC7664691 DOI: 10.3390/ma13215034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022]
Abstract
Currently, hydroxyapatite is probably the most researched material, due to its multiple applications in medical, environmental, or cultural heritage, when the classical structure is modified and calcium is displaced partially or totally with different metals. By changing the classical structure of the hydroxyapatite, new morphologies can be obtained, thus allowing final applications different from those of the initial hydroxyapatite material. However, their properties should be tuned for the desired application. In this context, the present paper describes the synthesis and characterization (through energy-dispersive X-ray fluorescence, X-ray diffraction, FTIR, thermal analysis, and transmission electron microscopy) of iron oxide/manganese-containing phosphatic phase composite materials, developed in order to obtain the enhancement of final environmental applications (photodegradation of dyes, adsorption of organic compounds). The composite material was tested for photocatalytic properties, after embedding in hydrosoluble film-forming materials. Photocatalytic coatings show different activity during the photodecomposition of Methylene Blue, used as a model of a contaminant. The photocatalytic activities of the materials were discussed in relationship with both the phosphatic materials and the magnetic components. Finally, other environmental applications were studied for the developed materials (adsorption of non-steroidal anti-inflammatory drugs—paracetamol and ibuprofen), revealing an enhancement of the adsorption capacity of the phosphatic material upon addition of the magnetic phase.
Collapse
|
9
|
Nowicki DA, Skakle JM, Gibson IR. Faster synthesis of A-type carbonated hydroxyapatite powders prepared by high-temperature reaction. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Riaz N, Hassan M, Siddique M, Mahmood Q, Farooq U, Sarwar R, Khan MS. Photocatalytic degradation and kinetic modeling of azo dye using bimetallic photocatalysts: effect of synthesis and operational parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2992-3006. [PMID: 31838680 DOI: 10.1007/s11356-019-06727-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 05/14/2023]
Abstract
Industrial wastewaters are the major source polluting the surface and ground water resources. Pollutants released along with the untreated textile industry wastewaters are responsible for the great damage to the natural resources like water. Considering the hazardous effects of the azo dyes (textile coloring agents) and their byproducts, there is a need to develop cost-effective and efficient treatment method for the textile wastewaters as such dyes have been reported as toxic, mutagenic, and carcinogenic and can cause direct demolition of aquatic communities. One of the possible and effective treatment methods is the use of TiO2 photocatalysis due to its chemical stability, low cost, and non-toxic nature. The present study explored the photocatalytic potential of anatase-type of bimetallic Cu-Ni/TiO2 photocatalysts under visible light irradiation for possible photocatalytic degradation and mineralization of Methyl Orange (MO), as model azo dye. The focus was to correlate the synthesis (different calcination temperatures, phase composition of TiO2 either anatase or rutile, and metal ion loading in terms of concentration and composition (Cu:Ni)) and operational parameters (photocatalyst loading, pollutant concentration, and irradiation time) that were believed responsible for the enhanced photocatalytic performance. Blank experiments were carried out to check the effect of metal loading in comparison to bare TiO2 and effect of absence or presence of light and photocatalysts on MO photodegradation. Results obtained using bimetallic photocatalysts are promising as compared to bare TiO2 as 100% MO removal and ~ 90% %COD removal were obtained in 90 min of irradiation, obeying a pseudo-first-order kinetics with photocatalytic reaction via the Langmuir-Hinshelwood mechanism with a good linear fit. Photocatalysts synthesized using anatase TiO2 were reported with improved performance compared to rutile phase. It is evident that synthesis parameters influence photocatalyst performance directly. The higher rate constant (> 1) that proves the excellent adsorption capacity of the tested photocatalysts for tested pollutants on the surface may have a great prospective for photocatalytic water purification at neutral pH.
Collapse
Affiliation(s)
- Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| | - Maryam Hassan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
11
|
Xu S, Chen X, Zhuang J. Opposite influences of mineral-associated and dissolved organic matter on the transport of hydroxyapatite nanoparticles through soil and aggregates. ENVIRONMENTAL RESEARCH 2019; 171:153-160. [PMID: 30665117 DOI: 10.1016/j.envres.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The mechanism by which soil organic matter (SOM) controls nanoparticle transport through natural soils is unclear. In this study, we distinguished the specific effects of two primary SOM fractions, mineral-associated organic matter (MOM) and dissolved organic matter (DOM), on the transport of hydroxyapatite nanoparticles (nHAP) through a loamy soil under the conditions of saturated steady flow and environmentally relevant solution chemistry (1 mM NaCl at pH 7). The results showed that MOM could inhibit the transport of nHAP by decreasing electrostatic repulsion and increasing mechanical straining and hydrophobic interactions. Specifically, the presence of MOM reduced the mobility of nHAP in the bulk soil and its macroaggregates by ~4 fold and ~6 fold, respectively, and this hindered effect became further conspicuous in microaggregates (~36 fold decrease). An analysis of extended Derjaguin-Landau-Vervey-Overbeek (abbreviated as XDLVO) interactions indicated that MOM could decrease the primary energy barrier (Φmax1), primary minimum (Φmin1), and secondary minimum (Φmin2) to promote nHAP attachment. Conversely, DOM (10-50 mg L-1) favored nHAP mobility due to an increase in electrostatic repulsion among nHAP particles and between nHAP and soil surfaces. Pre-flushing soil with DOM (causing DOM sorption on soil) increased nHAP mobility by ~2 fold in the bulk soil and its macroaggregates, and this facilitated effect was furthered in microaggregates (~11 fold increase). The results of XDLVO interactions showed that DOM increased Φmax1, Φmin1, and Φmin2, producing an unfavorable effect on nHAP attachment. Mass recovery data revealed that the MOM-hindered effect was stronger than the DOM-facilitated effect on nHAP transport. This study suggested that changing SOM fractions could control the mobility of nanoparticles in the subsurface considerably.
Collapse
Affiliation(s)
- Shuang Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
12
|
Xu C, Nasrollahzadeh M, Selva M, Issaabadi Z, Luque R. Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem Soc Rev 2019; 48:4791-4822. [DOI: 10.1039/c8cs00543e] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The waste-to-wealth concept aims to promote a future sustainable lifestyle where waste valorization is seen not only for its intrinsic benefits to the environment but also to develop new technologies, livelihoods and jobs.
Collapse
Affiliation(s)
- Chunping Xu
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | | | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi
- Universita Ca Foscari
- Venezia Mestre
- Italy
- Departamento de Quimica Organica
| | - Zahra Issaabadi
- Department of Chemistry
- Faculty of Science
- University of Qom
- Qom 3716146611
- Iran
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Cordoba
- Spain
- Peoples Friendship University of Russia (RUDN University)
| |
Collapse
|
13
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|
14
|
Monmaturapoj N, Sri-On A, Klinsukhon W, Boonnak K, Prahsarn C. Antiviral activity of multifunctional composite based on TiO 2-modified hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:96-102. [PMID: 30184826 DOI: 10.1016/j.msec.2018.06.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 05/11/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
An antiviral activity of TiO2-modified hydroxyapatite composite (HA/TiO2) had been investigated. The HA/TiO2 composite (HA50:Ti50) was prepared by a solid state reaction method followed by calcination at 650 °C for 2 h. Phase formations and morphologies of the obtained HA/TiO2 composite powders were determined using XRD and SEM. XRD result confirmed that HA/TiO2 composite was successfully prepared. SEM revealed small crystals of anatase TiO2 embedded in larger HA crystals. A strong antiviral activity against H1N1 Influenza A Virus was observed at 0.5 mg/ml concentration of the composite under the UV irradiation for 60 min. It showed the highest rate of reducing virus titer approximately more than 2 log/h. Results obtained from this study indicated that HA/TiO2 composite could be a promising material to be used as antimicrobial filtration applications such as in face masks.
Collapse
Affiliation(s)
- Naruporn Monmaturapoj
- National Metal and Materials Technology Center, 114 Thailand Science Park, Pathumthani 12120, Thailand.
| | - Autcharaporn Sri-On
- National Metal and Materials Technology Center, 114 Thailand Science Park, Pathumthani 12120, Thailand
| | - Wattana Klinsukhon
- National Metal and Materials Technology Center, 114 Thailand Science Park, Pathumthani 12120, Thailand
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
| | - Chureerat Prahsarn
- National Metal and Materials Technology Center, 114 Thailand Science Park, Pathumthani 12120, Thailand
| |
Collapse
|
15
|
Oh SC, Xu J, Tran DT, Liu B, Liu D. Effects of Controlled Crystalline Surface of Hydroxyapatite on Methane Oxidation Reactions. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Su Cheun Oh
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jiayi Xu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dat T. Tran
- U.S. Army Research Laboratory, RDRL-SED-E, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Bin Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Adamiano A, Sangiorgi N, Sprio S, Ruffini A, Sandri M, Sanson A, Gras P, Grossin D, Francès C, Chatzipanagis K, Bilton M, Marzec B, Varesano A, Meldrum F, Kröger R, Tampieri A. Biomineralization of a titanium-modified hydroxyapatite semiconductor on conductive wool fibers. J Mater Chem B 2017; 5:7608-7621. [PMID: 32264236 DOI: 10.1039/c7tb00211d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metal ions are frequently incorporated into crystalline materials to improve their electrochemical properties and to confer new physicochemical properties. Naturally-occurring phosphate apatite, which is formed geologically and in biomineralization processes, has extensive potential applications and is therefore an attractive functional material. In this study, we generate a novel building block for flexible optoelectronics using bio-inspired methods to deposit a layer of photoactive titanium-modified hydroxyapatite (TiHA) nanoparticles (NPs) on conductive polypyrrole(PPy)-coated wool yarns. The titanium concentration in the reaction solution was varied between 8-50 mol% with respect to the phosphorous, which led to titanate ions replacing phosphate in the hydroxyapatite lattice at levels up to 17 mol%. PPy was separately deposited on wool yarns by oxidative polymerization, using two dopants: (i) anthraquinone-2,6-disulfonic acid to increase the conductivity of the PPy layer and (ii) pyroglutamic acid, to reduce the resistivity of the wool yarns and to promote the heterogeneous nucleation of the TiHA NPs. A specific titanium concentration (25 mol% wrt P) was used to endow the TiHA NPs on the PPy-coated fibers with a desirable band gap value of 3.68 eV, and a specific surface area of 146 m2 g-1. This is the first time that a thin film of a wide-band gap semiconductor has been deposited on natural fibers to create a fiber-based building block that can be used to manufacture flexible electronic devices.
Collapse
Affiliation(s)
- Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza (RA), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fihri A, Len C, Varma RS, Solhy A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Piccirillo C, L Castro PM. Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:79-91. [PMID: 28189932 DOI: 10.1016/j.jenvman.2017.01.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Calcium hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material widely used in biomedicine, for bone implants manufacture, due to its biocompatibility. HAp has also application for environmental remediation, as it can be employed as metal removal; moreover, it has the capability of effectively adsorbing organic molecules its surface. In recent years, the photocatalytic properties of HAp have been investigated; indeed several studies report of HAp used as photocatalyst, either on its own or combined with other photocatalytic materials. Although in the majority of cases the activity was induced by UV light, some reports of visible light-activated materials were reported. Here we present a critical review of the latest developments for HAp-based photocatalysts; the materials discussed are undoped single phase HAp, doped HAp and HAp-containing composites. For undoped single phase HAp, the possible surface treatment and lattice defects which can lead to a photoactive material are discussed. Considering doped HAp, the use of Ti4+ (the most common dopant) is described, with particular attention to the effects that this metal have on the characteristics of the material (i.e. crystallinity) and on its photocatalytic behaviour. The use of other dopants is also discussed. For the multiphasic materials, the combination of HAp with other photocatalysts is discussed, mainly but not only with titanium dioxide TiO2. Overall, HAp is a compound with high potential as photocatalyst; this property, combined with its capability for heavy metal removal, makes it a multifunctional material for environmental remediation. As future perspectives, further studies, based on the results obtained until present, should be performed, to improve the performance of the materials and/or shift the band gap into the visible. The use of other dopants and/or the combination with other photocatalysts, for instance, are features which is worth exploring.
Collapse
Affiliation(s)
- C Piccirillo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal.
| | - P M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal
| |
Collapse
|
20
|
Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:51. [PMID: 28197823 DOI: 10.1007/s10856-017-5846-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The in vitro and in vivo performance of hydroxyapatite (HAp) coatings can be modified by the addition of different trace ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HAp lattice, to more closely mirror the complex chemistry of human bone. To date, most of the work in the literature has considered single ion-substituted materials and coatings, with limited reports on co-substituted calcium phosphate systems. The aim of this study was to investigate the potential of radio frequency magnetron sputtering to deposit Sr and Zn co-substituted HAp coatings using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The FTIR and XPS results highlight that all of the Sr, Zn and Sr-Zn co-substituted surfaces produced are all dehydroxylated and are calcium deficient. All of the coatings contained HPO42- groups, however; only the pure HAp coating and the Sr substituted HAp coating contained additional CO32- groups. The XRD results highlight that none of the coatings produced in this study contain any other impurity CaP phases, showing peaks corresponding to that of ICDD file #01-072-1243 for HAp, albeit shifted to lower 2θ values due to the incorporation of Sr into the HAp lattice for Ca (in the Sr and Sr-Zn co-substituted surfaces only). Therefore, the results here clearly show that RF magnetron sputtering offers a simple means to deliver Sr and Zn co-substituted HAp coatings with enhanced surface properties. (a) XRD patterns for RF magnetron sputter deposited hydroxyapatite coatings and (b)-(d) for Sr, Zn and Sr-Zn co-substituted coatings, respectively. The XPS spectra in (b) confirms the presence of a HA sputter deposited coating as opposed to
Collapse
Affiliation(s)
- L Robinson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - K Salma-Ancane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV, 1007, Latvia
| | - L Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV, 1007, Latvia
| | - B J Meenan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK.
| |
Collapse
|
21
|
Weerasuriya D, Wijesinghe W, Rajapakse R. Encapsulation of anticancer drug copper bis(8-hydroxyquinoline) in hydroxyapatite for pH-sensitive targeted delivery and slow release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:206-213. [DOI: 10.1016/j.msec.2016.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/31/2016] [Accepted: 10/07/2016] [Indexed: 01/24/2023]
|
22
|
Mondal S, De Anda Reyes ME, Pal U. Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv 2017. [DOI: 10.1039/c6ra28640b] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile surfactant free wet-precipitation process was employed to prepare hydroxyapatite (HAp) nanoparticles.
Collapse
Affiliation(s)
- Sudip Mondal
- Instituto de Física
- Benemérita Universidad Autónoma de Puebla (BUAP)
- Puebla
- Mexico
| | | | - Umapada Pal
- Instituto de Física
- Benemérita Universidad Autónoma de Puebla (BUAP)
- Puebla
- Mexico
| |
Collapse
|
23
|
Márquez Brazón E, Piccirillo C, Moreira IS, Castro PML. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:486-495. [PMID: 27526086 DOI: 10.1016/j.jenvman.2016.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceutical persistent pollutants pose a serious threat to the environment. The aim of this study was to use, for the first time, hydroxyapatite-based biomaterials as photocatalysts to degrade micropollutants. Diclofenac and fluoxetine were selected for these initial tests. Hydroxyapatite (Ca10(PO4)(OH)2, HAp) is one of the most commonly used biomaterials/bioceramics, being a major constituent of bone. In this work sustainable HAp-based materials of marine origin, obtained from cod fish bones, were used; these photocatalysts were previously fully studied and characterised. Both single-phase HAp and HAp-titania multicomponent materials (1 wt% TiO2) were employed as UV light photocatalysts, the latter showing better performance, indicated by higher degradation rates of both compounds. The HAp-titania photocatalyst showed excellent degradation of both persistent pollutants, the maximum degradation performance being 100% for fluoxetine and 92% for diclofenac, with pollutant and photocatalyst concentrations of 2 ppm and 4 g/L, respectively. Variations in features such as pollutant and photocatalyst concentrations were investigated, and results showed that generally fluoxetine was degraded more easily than diclofenac. The photocatalyst's crystallinity was not affected by the photodegradation reaction; indeed the material exhibited good photostability, as the degradation rate did not decrease when the material was reused. Tests were also performed using actual treated wastewater; the photocatalyst was still effective, even if with lower efficiency (-20% and -4% for diclofenac and fluoxetine, respectively). TOC analysis showed high but incomplete mineralisation of the pollutants (maximum 60% and 80% for DCF and FXT, respectively).
Collapse
Affiliation(s)
- E Márquez Brazón
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal; Departamento de Quimica, Escuela de Ciencias, Universidad de Oriente Nucleo Sucre, Cumaná, Venezuela
| | - C Piccirillo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal.
| | - I S Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal
| | - P M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal.
| |
Collapse
|
24
|
Teng HP, Yang CJ, Lin JF, Huang YH, Lu FH. A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Characteristics of surface and electrochemical properties of composites with fumed metal oxides and hydroxyapatite. ADSORPTION 2016. [DOI: 10.1007/s10450-016-9770-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Nishikawa M, Tan LH, Nakabayashi Y, Hasegawa T, Shiroishi W, Kawahara S, Saito N, Nosaka A, Nosaka Y. Visible light responsive vanadium-substituted hydroxyapatite photocatalysts. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Asjadi F, Salahi E, Mobasherpour I. Removal of Reactive Red 141 Dye from Aqueous Solution by Titanium Hydroxyapatite Pellets. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1018423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Gan W, Gao L, Zhan X, Li J. Hydrothermal synthesis of magnetic wood composites and improved wood properties by precipitation with CoFe2O4/hydroxyapatite. RSC Adv 2015. [DOI: 10.1039/c5ra06138e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Yan T, Guan W, Cui L, Xu Y, Tian J. Immobilization of cadmium ions to synthesis hierarchical flowerlike cadmium phosphates microspheres and their application in the degradation of organic pollutants under light irradiation. RSC Adv 2015. [DOI: 10.1039/c5ra07224g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hierarchical flowerlike Cd5H2(PO4)4·4H2O and Cd5(PO4)2P2O7 microspheres were prepared by cadmium ion immobilization followed by an annealing treatment. Cd5(PO4)2P2O7 was applied as a novel photocatalyst toward dye degradation under light irradiation.
Collapse
Affiliation(s)
- Tingjiang Yan
- The Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Wenfei Guan
- The Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Liting Cui
- The Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Yanqiu Xu
- The Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Jun Tian
- The Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| |
Collapse
|
30
|
Shen J, Jin B, Hu Y, Jiang Q. An effective route to the synthesis of carbonated apatite crystals with controllable morphologies and their growth mechanism. CrystEngComm 2015. [DOI: 10.1039/c5ce00812c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CHAp powders with controllable morphologies and sizes were synthesized using HMT as a hydroxide anion-generating agent in a phosphate-surplus solution.
Collapse
Affiliation(s)
- Juan Shen
- School of Materials Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010, China
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials
- Southwest University of Science and Technology
| | - Bo Jin
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials
- Southwest University of Science and Technology
- Mianyang 621010, China
| | - Yamin Hu
- School of Materials Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010, China
| | - Qiying Jiang
- School of Materials Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010, China
| |
Collapse
|
31
|
Wijesinghe W, Mantilaka M, Premalal E, Herath H, Mahalingam S, Edirisinghe M, Rajapakse R, Rajapakse R. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:83-90. [DOI: 10.1016/j.msec.2014.05.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/21/2014] [Accepted: 05/07/2014] [Indexed: 12/25/2022]
|
32
|
Synthesis and characterization of Ti(IV)-substituted calcium hydroxyapatite particles by forced hydrolysis of Ca(OH)2-Na5P3O10-TiCl4 mixed solution. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3320-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:527-32. [PMID: 25175246 DOI: 10.1016/j.msec.2014.07.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/01/2014] [Accepted: 07/07/2014] [Indexed: 01/26/2023]
Abstract
Hydroxyapatite (HA) is a bioactive material that is widely used for improving the osseointegration of titanium dental implants. Titanium can be coated with HA by various methods, such as chemical vapor deposition (CVD), thermal spray, or plasma spray. HA coatings can also be grown on titanium surfaces by hydrothermal, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO), or microarc oxidation (MAO), is an electrochemical method that enables the production of a thick porous oxide layer on the surface of a titanium implant. If the electrolyte in which PEO is performed contains calcium and phosphate ions, the oxide layer produced may contain hydroxyapatite. The HA content can then be increased by subsequent hydrothermal treatment. The HA thus produced on titanium surfaces has attractive properties, such as a high porosity, a controllable thickness, and a considerable density, which favor its use in dental and bone surgery. This review summarizes the state of the art and possible further development of PEO for the production of HA on Ti implants.
Collapse
|
34
|
Kolmas J, Groszyk E, Kwiatkowska-Różycka D. Substituted hydroxyapatites with antibacterial properties. BIOMED RESEARCH INTERNATIONAL 2014; 2014:178123. [PMID: 24949423 PMCID: PMC4037608 DOI: 10.1155/2014/178123] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/14/2014] [Indexed: 02/06/2023]
Abstract
Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency.
Collapse
Affiliation(s)
- Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland
| | - Ewa Groszyk
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland
| | - Dagmara Kwiatkowska-Różycka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
35
|
Nishikawa M, Yang W, Nosaka Y. Grafting effects of Cu2+ on the photocatalytic activity of titanium-substituted hydroxyapatite. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Tanaka H, Ohnishi A. Synthesis of Ti(IV)-substituted calcium hydroxyapatite microparticles by hydrolysis of phenyl phosphates. ADV POWDER TECHNOL 2013. [DOI: 10.1016/j.apt.2013.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ghadimi E, Eimar H, Marelli B, Nazhat SN, Asgharian M, Vali H, Tamimi F. Trace elements can influence the physical properties of tooth enamel. SPRINGERPLUS 2013; 2:499. [PMID: 24133648 PMCID: PMC3795877 DOI: 10.1186/2193-1801-2-499] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
In previous studies, we showed that the size of apatite nanocrystals in tooth enamel can influence its physical properties. This important discovery raised a new question; which factors are regulating the size of these nanocrystals? Trace elements can affect crystallographic properties of synthetic apatite, therefore this study was designed to investigate how trace elements influence enamel's crystallographic properties and ultimately its physical properties. The concentration of trace elements in tooth enamel was determined for 38 extracted human teeth using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The following trace elements were detected: Al, K, Mg, S, Na, Zn, Si, B, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se and Ti. Simple and stepwise multiple regression was used to identify the correlations between trace elements concentration in enamel and its crystallographic structure, hardness, resistance to crack propagation, shade lightness and carbonate content. The presence of some trace elements in enamel was correlated with the size (Pb, Ti, Mn) and lattice parameters (Se, Cr, Ni) of apatite nanocrystals. Some trace elements such as Ti was significantly correlated with tooth crystallographic structure and consequently with hardness and shade lightness. We conclude that the presence of trace elements in enamel could influence its physical properties.
Collapse
Affiliation(s)
- Elnaz Ghadimi
- Faculty of Dentistry, McGill University, Montreal, QC Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Greener photocatalysts: Hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater. Chem Eng Res Des 2013. [DOI: 10.1016/j.cherd.2013.04.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Kandori K, Oketani M, Wakamura M. Decomposition of proteins by photocatalytic Ti(IV)-doped calcium hydroxyapatite particles. Colloids Surf B Biointerfaces 2013; 102:908-14. [DOI: 10.1016/j.colsurfb.2012.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
40
|
Effects of Ti(IV) substitution on protein adsorption behaviors of calcium hydroxyapatite particles. Colloids Surf B Biointerfaces 2013; 101:68-73. [DOI: 10.1016/j.colsurfb.2012.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/09/2012] [Indexed: 11/20/2022]
|
41
|
FTIR studies on photocatalytic activity of Ti(IV)-doped calcium hydroxyapatite particles. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcata.2012.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Alumina/TiO2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air. REACTION KINETICS MECHANISMS AND CATALYSIS 2012. [DOI: 10.1007/s11144-012-0457-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Riad M, Mikhail S. Oxidative desulfurization of light gas oil using zinc catalysts prepared via different techniques. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20064c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Tanaka H, Tsuda E, Nishikawa H, Fuji M. FTIR studies of adsorption and photocatalytic decomposition under UV irradiation of dimethyl sulfide on calcium hydroxyapatite. ADV POWDER TECHNOL 2012. [DOI: 10.1016/j.apt.2011.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Kandori K, Kuroda T, Wakamura M. Protein adsorption behaviors onto photocatalytic Ti(IV)-doped calcium hydroxyapatite particles. Colloids Surf B Biointerfaces 2011; 87:472-9. [DOI: 10.1016/j.colsurfb.2011.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/05/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
|
46
|
Wakamura M, Tanaka H, Naganuma Y, Yoshida N, Watanabe T. Surface structure and visible light photocatalytic activity of titanium–calcium hydroxyapatite modified with Cr(III). ADV POWDER TECHNOL 2011. [DOI: 10.1016/j.apt.2010.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Qaisar SA, Bilton M, Wallace R, Brydson R, Brown AP, Ward M, Milne SJ. Sol-gel synthesis and TEM-EDX characterisation of hydroxyapatite nanoscale powders modified by Mg, Sr or Ti. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/241/1/012042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Veselinović L, Karanović L, Stojanović Z, Bračko I, Marković S, Ignjatović N, Uskoković D. Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889809051395] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A series of cobalt-exchanged hydroxyapatite (CoHAp) powders with different Ca/Co ratios and nominal unit-cell contents Ca10−xCox(PO4)6(OH)2,x= 0, 0.5, 1.0, 1.5 and 2.0, were synthesized by hydrothermal treatment of a precipitate at 473 K for 8 h. Based on ICP (inductively coupled plasma) emission spectroscopy analysis, it was established that the maximum amount of cobalt incorporation saturated at ∼12 at.% under these conditions. The effects of cobalt content on the CoHAp powders were investigated using ICP emission spectroscopy, particle size analysis, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) analyses as well as X-ray powder diffraction (XRPD) including Rietveld analysis. According to XRPD, all the materials are single-phase HAp and CoHAp of low crystallinity. Rietveld analysis shows that Co enrichment causes theccell parameter to decrease at a faster rate than theacell parameter. A microstructural analysis showed anisotropic X-ray line broadening due to crystallite size reduction. In CoHAp there is significant crystal elongation in [001], and the average size decreases with increasing cobalt content. The crystallite morphology transforms from rod-like for the pure HAp to lamellae at the highest degree of Co substitution. The results of Rietveld refinement (symmetry, size and morphology of the crystallites) were confirmed by TEM and HRTEM analysis.
Collapse
|
49
|
Yin S, Ellis DE. First-principles investigations of Ti-substituted hydroxyapatite electronic structure. Phys Chem Chem Phys 2010; 12:156-63. [DOI: 10.1039/b915171k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Development and characterization of titanium-containing hydroxyapatite for medical applications. Acta Biomater 2010; 6:241-9. [PMID: 19577668 DOI: 10.1016/j.actbio.2009.06.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/29/2009] [Accepted: 06/29/2009] [Indexed: 11/22/2022]
Abstract
Hydroxyapatite containing levels of titanium (TiHA) of up to 1.6 wt.% has been produced via a chemical co-precipitation route. The distribution of Ti was seen by transmission electron microscopy/energy-dispersive X-ray analysis to be uniform throughout as-prepared nanosized TiHA particles (20 nm x 100 nm). The incorporation of Ti into the HA structure was found to influence the ceramic microstructure on sintering and the grain size was found to decrease from 0.89 microm with HA to 0.63 microm with 0.8 wt.% TiHA (0.8 TiHA) and 0.45 microm with 1.6 wt.% TiHA (1.6 TiHA). Rietveld refinement analysis showed that there was a proportional increase in both the a and c axis with incorporation of Ti into the HA lattice structure, leading to an increase in the cell volume with the addition of Ti. Fourier transform-Raman analysis showed a slight increase in the ratio of O-H/P-O peaks on TiHA, in comparison with HA. A bone-like apatite layer was formed on the surface of TiHA after immersion in simulated body fluid for 3 days, which demonstrated the high in vitro bioactivity of TiHA. In vitro culture with primary human osteoblast (HOB) cells revealed that TiHA was able to support the growth and proliferation of HOB cells in vitro, with a significantly higher cell activity being observed on 0.8 TiHA after 7 days of culture in comparison with that on HA. Well-organized actin cytoskeletal protein was developed after 1 day of culture, and an increase in cell filopodia (attachment) was observed on TiHA sample surfaces. The results indicate that TiHA has great potential for biomedical applications.
Collapse
|