1
|
Šimek M, Mahato S, Dehnert BW, Kwon O. Deacylative Homolysis of Ketone C(sp 3)-C(sp 2) Bonds: Streamlining Natural Product Transformations. J Am Chem Soc 2025; 147:2664-2674. [PMID: 39772625 PMCID: PMC12075819 DOI: 10.1021/jacs.4c15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The homolytic cleavage of C-C bonds adjacent to specific functional groups has lately emerged as a versatile approach for molecular diversification. Despite the ubiquity and synthetic utility of ketones, radical fragmentation of their α-C-C bonds has proven to be a formidable challenge. Here, we present a broadly applicable deacylative strategy designed to homolytically cleave aliphatic ketones of various complexities, including transformations of cycloalkanones into carboxylic acids tethered to C-centered free radicals that can be engaged in diverse radical-based processes. The method involves ketone activation through treatment with hydrogen peroxide, yielding gem-dihydroperoxides. Subsequent single-electron-transfer reduction mediated by a low-valent metal complex generates alkyl radicals that can be captured selectively with a radicophile of choice, including through catalytic cross-coupling. The logic of our deacylative functionalization is exemplified by the total synthesis of 14 natural products, one analogue, and two drugs starting from readily available natural products, showcasing its transformative power in complex settings. This approach obviates the need for complex reagents and allows the controlled conversion of ketones to reconstructed products, making the process highly applicable across a spectrum of domains.
Collapse
Affiliation(s)
- Michal Šimek
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States; Present Address: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Sujit Mahato
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| | - Brady W. Dehnert
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
2
|
Bityukov OV, Vil’ VA, Terent’ev AO. Synthesis of Acyclic Geminal Bis-peroxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Zha Q, Wu Y. Synthesis of Primary gem-Dihydroperoxides and Their Peroxycarbenium [3 + 2] Cycloaddition Reactions with Alkenes. J Org Chem 2020; 85:14121-14138. [PMID: 33108728 DOI: 10.1021/acs.joc.0c02180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is long known that dihydroperoxidation of aliphatic aldehydes is extremely difficult and normally stops halfway at the hydroxyhydroperoxide stage. This strange phenomenon now has been explored, and a highly effective protocol for conversion of aliphatic aldehydes into gem-dihydroperoxides has been developed. Silyl protection of primary gem-dihydroperoxides, which is also a challenge due to unexpected based-induced decomposition, was achieved using 2,6-lutidine as the base. The silyl-protected gem-dihydroperoxides were then examined in a peroxycarbenium [3 + 2] cycloaddition reaction with alkenes for the first time. Aromatic substrates normally reacted smoothly, affording the expected 1,2-dioxolanes smoothly. Aliphatic aldehydes generally failed to yield 1,2-dioxolane. In all cases, unexpected formation of either a chlorohydrin or a 1,2-dichloride (with Cl atoms derived from TiCl4) depending on the alkene employed was observed, which displays some so far unknown facets of the cycloaddition and helped to gain many mechanistic insights.
Collapse
Affiliation(s)
- Qinghong Zha
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Yikang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| |
Collapse
|
4
|
Zdvizhkov AT, Radulov PS, Novikov RA, Tafeenko VA, Chernyshev VV, Ilovaisky AI, Terent’ev AO, Nikishin GI. Convenient synthesis of furo[2,3-c][1,2]dioxoles from 1-aryl-2-allylalkane-1,3-diones. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Antolínez IV, Barbosa LCA, Borgati TF, Baldaia A, Ferreira SR, Almeida RM, Fujiwara RT. Tetroxanes as New Agents against Leishmania amazonensis. Chem Biodivers 2020; 17:e2000142. [PMID: 32294320 DOI: 10.1002/cbdv.202000142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is a neglected disease, caused by a parasite of Leishmania genus and widespread in the tropical and subtropical areas of the world. Currents drugs are limited due to their toxicity and parasite resistance. Therefore, the discovery of new treatment, more effective and less toxic, is urgent. In this study, we report the synthesis of six gem-dihydroperoxides (2a-2f), with yields ranging from 10 % to 90 %, utilizing a new methodology. The dihydroperoxides were converted into ten tetroxanes (3a-3j), among which six (3b, 3c, 3d, 3g, 3h and 3j) showed activity against intracellular amastigotes of Leishmania amazonensis. The cytotoxicity of all compounds was also evaluated against canine macrophages (DH82), human hepatoma (HepG2) and monkey renal cells (BGM). Most compounds were more active and less toxic than potassium antimonyl tartrate trihydrate, used as positive control. Amongst all tetroxanes, 3b (IC50 =0.64 μm) was the most active, being more selective than positive control in relation to DH82, HepG2 and BGM cells. In summary, the results revealed a hit compound for the development of new drugs to treat leishmaniasis.
Collapse
Affiliation(s)
- Isabel V Antolínez
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Tatiane F Borgati
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil.,Department of Exact Sciences, State University of Minas Gerais, Av. Paraná, 3001, Jardim Belvedere I, Campus, Divinópolis, CEP, 35501-170, Divinópolis, MG, Brazil
| | - Almodvar Baldaia
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Sebastião R Ferreira
- Health Science Center, Universidade Federal do Sul da Bahia, Praça Joana Angélica, 250 São José, CEP, 45988-058, Teixeira de Freitas, BA, Brazil
| | - Raquel M Almeida
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| | - Ricardo T Fujiwara
- Department of Parasitology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Yaremenko IA, Radulov PS, Belyakova YY, Demina AA, Fomenkov DI, Barsukov DV, Subbotina IR, Fleury F, Terent'ev AO. Catalyst Development for the Synthesis of Ozonides and Tetraoxanes Under Heterogeneous Conditions: Disclosure of an Unprecedented Class of Fungicides for Agricultural Application. Chemistry 2020; 26:4734-4751. [PMID: 31774931 DOI: 10.1002/chem.201904555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Indexed: 01/31/2023]
Abstract
The catalyst H3+x PMo12-x +6 Mox +5 O40 supported on SiO2 was developed for peroxidation of 1,3- and 1,5-diketones with hydrogen peroxide with the formation of bridged 1,2,4,5-tetraoxanes and bridged 1,2,4-trioxolanes (ozonides) with high yield based on isolated products (up to 86 and 90 %, respectively) under heterogeneous conditions. Synthesis of peroxides under heterogeneous conditions is a rare process and represents a challenge for this field of chemistry, because peroxides tend to decompose on the surface of a catalyst . A new class of antifungal agents for crop protection, that is, cyclic peroxides: bridged 1,2,4,5-tetraoxanes and bridged ozonides, was discovered. Some ozonides and tetraoxanes exhibit a very high antifungal activity and are superior to commercial fungicides, such as Triadimefon and Kresoxim-methyl. It is important to note that none of the fungicides used in agricultural chemistry contains a peroxide fragment.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Peter S Radulov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Yulia Y Belyakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Arina A Demina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, 119991, Russia
| | - Dmitriy I Fomenkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
| | - Denis V Barsukov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Irina R Subbotina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP CNRS UMR 6286 Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| |
Collapse
|
7
|
An X, Zha Q, Wu Y. Perhydrolysis in Ethereal H2O2 Mediated by MoO2(acac)2: Distinct Chemoselectivity between Ketones, Ketals, and Epoxides. Org Lett 2019; 21:1542-1546. [DOI: 10.1021/acs.orglett.9b00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaosheng An
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qinghong Zha
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yikang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Khosravi K, Zendehdel M, Naserifar S, Tavakoli F, Khalaji K, Asgari A. Heteropoly acid/NaY zeolite as a reusable solid catalyst for highly efficient synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14792244600532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
gem-Dihydroperoxides and 1,2,4,5-tetraoxanes were synthesised from aldehydes and ketones catalysed by heteropoly acid/NaY zeolite (HPA/NaY) as a new, effective and reusable solid catalyst using 30% aqueous hydrogen peroxide at room temperature. The reactions proceeded with high rates and excellent yields.
Collapse
Affiliation(s)
- Kaveh Khosravi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Mojgan Zendehdel
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Shirin Naserifar
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Fatemeh Tavakoli
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Kobra Khalaji
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Atefeh Asgari
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| |
Collapse
|
9
|
Organocatalytic peroxidation of malonates, β-ketoesters, and cyanoacetic esters using n-Bu4NI/t-BuOOH-mediated intermolecular oxidative C(sp3)–O coupling. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.09.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Peroxidation of β-diketones and β-keto esters with tert-butyl hydroperoxide in the presence of Cu(ClO4)2/SiO2. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0763-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Khosravi K, Pirbodaghi F, Kazemi S, Asgari A. Sulfamic acid: as a green and reusable homogeneous catalyst for peroxidation of ketones and aldehydes using aqueous 30 % H2O2. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0598-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Terent'ev AO, Sharipov MY, Krylov IB, Gaidarenko DV, Nikishin GI. Manganese triacetate as an efficient catalyst for bisperoxidation of styrenes. Org Biomol Chem 2015; 13:1439-45. [DOI: 10.1039/c4ob01823k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bisperoxidation of styrenes with tert-butyl hydroperoxide in the presence of a catalytic amount of Mn(OAc)3.
Collapse
Affiliation(s)
- Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia
| | - Mikhail Yu. Sharipov
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia
| | - Igor B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Darya V. Gaidarenko
- D.I. Mendeleev University of Chemical Technology of Russia
- Moscow
- Russian Federation
| | - Gennady I. Nikishin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|
13
|
Yaremenko IA, Terent'ev AO, Vil' VA, Novikov RA, Chernyshev VV, Tafeenko VA, Levitsky DO, Fleury F, Nikishin GI. Approach for the Preparation of Various Classes of Peroxides Based on the Reaction of Triketones with H2O2: First Examples of Ozonide Rearrangements. Chemistry 2014; 20:10160-9. [DOI: 10.1002/chem.201402594] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 12/20/2022]
|
14
|
Mild and efficient oxidation of 2-pyrazolines and isoxazolines by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane–NH4Cl–HOAc in water–MeCN. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1626-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Terent'ev AO, Zdvizhkov AT, Kulakova AN, Novikov RA, Arzumanyan AV, Nikishin GI. Reactions of mono- and bicyclic enol ethers with the I2–hydroperoxide system. RSC Adv 2014. [DOI: 10.1039/c3ra46462h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reactions of mono- and bicyclic enol ethers with I2–H2O2, I2–ButOOH, and I2–tetrahydropyranyl hydroperoxide systems possessing unique and unpredictable reactivity have been studied.
Collapse
Affiliation(s)
- Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Alexander T. Zdvizhkov
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Alena N. Kulakova
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Ashot V. Arzumanyan
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow, Russian Federation
| |
Collapse
|
16
|
Hao HD, Wittlin S, Wu Y. Potent Antimalarial 1,2,4-Trioxanes through Perhydrolysis of Epoxides. Chemistry 2013; 19:7605-19. [DOI: 10.1002/chem.201300076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/21/2013] [Indexed: 11/06/2022]
|
17
|
Bunge A, Hamann HJ, Dietz D, Liebscher J. Enantioselective epoxidation of tertiary allylic alcohols by chiral dihydroperoxides. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Terent'ev AO, Yaremenko IA, Vil’ VA, Moiseev IK, Kon'kov SA, Dembitsky VM, Levitsky DO, Nikishin GI. Phosphomolybdic and phosphotungstic acids as efficient catalysts for the synthesis of bridged 1,2,4,5-tetraoxanes from β-diketones and hydrogen peroxide. Org Biomol Chem 2013; 11:2613-23. [DOI: 10.1039/c3ob27239g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Azarifar D, Najminejad Z, Khosravi K. Synthesis of gem-Dihydroperoxides from Ketones and Aldehydes Using Silica Sulfuric Acid as Heterogeneous Reusable Catalyst. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.610549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Davood Azarifar
- a Department of Chemistry , University of Bu-Ali Sina , Hamedan , Iran
| | - Zohreh Najminejad
- a Department of Chemistry , University of Bu-Ali Sina , Hamedan , Iran
| | - Kaveh Khosravi
- a Department of Chemistry , University of Bu-Ali Sina , Hamedan , Iran
| |
Collapse
|
20
|
Sashidhara KV, Avula SR, Ravithej Singh L, Palnati GR. A facile and efficient Bi(III) catalyzed synthesis of 1,1-dihydroperoxides and 1,2,4,5-tetraoxanes. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Khosravi K, Kazemi S. Zinc Chloride Anhydrous as New and Effective Catalyst for Conversion of Ketones and Aldehydes to Corresponding Gem-dihydroperoxides. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Khosravi K, Kazemi S. Trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane/HBr System as New, Effective, Mild and Non-toxic Reagent for Synthesis of 2-Aryl-1H-benzothiazoles and 2-Aryl-1-arylmethyl-1H-benzimidazoles. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Khosravi K, Kazemi S. Green, mild and efficient bromination of aromatic compounds by HBr promoted by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane in water as a solvent. CHINESE CHEM LETT 2012. [DOI: 10.1016/j.cclet.2012.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Khazaei A, Zolfigol MA, Mokhlesi M, Zare A, Derakhshan-Panah F, Merajoddin M, Keypour H, Dehghani-Firouzabadi AA. Pyrazinium Di(hydrogen sulfate) as a Novel, Highly Efficient and Homogeneous Catalyst for the Condensation of Enolizable Ketones with Aldehydes, Acetonitrile and Acetyl Chloride. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Liu YH, Deng J, Gao JW, Zhang ZH. Triflic Acid-Functionalized Silica-Coated Magnetic Nanoparticles as a Magnetically Separable Catalyst for Synthesis of gem-Dihydroperoxides. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100561] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Hao HD, Li Y, Han WB, Wu Y. A hydrogen peroxide based access to qinghaosu (artemisinin). Org Lett 2011; 13:4212-5. [PMID: 21761857 DOI: 10.1021/ol2015434] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Attachment of H(2)O(2) onto the highly hindered quaternary C-12a in an advanced qinghaosu (artemisinin) precursor has been achieved through a facile perhydrolysis of a spiro epoxy ring with the aid of a previously unknown molybdenum species without involving any special equipment or complicated operations. The resultant β-hydroxyhydroperoxide can be further elaborated into qinghaosu, illustrating an entry fundamentally different from the existing ones to this outstanding natural product of great importance in malaria chemotherapy.
Collapse
Affiliation(s)
- Hong-Dong Hao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
27
|
Tada N, Cui L, Okubo H, Miura T, Itoh A. An Efficient Synthesis of gem-Dihydroperoxides with Molecular Oxygen and Anthracene under Light Irradiation. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Azarifar D, Khosravi K, Soleimanei F. Mild and efficient strontium chloride hexahydrate-catalyzed conversion of ketones and aldehydes into corresponding gem-dihydroperoxides by aqueous H2O2. Molecules 2010; 15:1433-41. [PMID: 20335991 PMCID: PMC6257293 DOI: 10.3390/molecules15031433] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/11/2010] [Accepted: 03/01/2010] [Indexed: 11/16/2022] Open
Abstract
SrCl2·6H2O has been shown to act as an efficient catalyst for the conversion of aldehydes or ketones into the corresponding gem-dihydroperoxides (DHPs) by treatment with aqueous H2O2 (30%) in acetonitrile. The reactions proceed under mild and neutral conditions at room temperature to afford good to excellent yields of product.
Collapse
Affiliation(s)
- Davood Azarifar
- Faculty of Chemistry, Bu-Ali Sina University, 65178 Hamadan, Iran.
| | | | | |
Collapse
|
29
|
Tada N, Cui L, Okubo H, Miura T, Itoh A. A facile catalyst-free synthesis of gem-dihydroperoxides with aqueous hydrogen peroxide. Chem Commun (Camb) 2010; 46:1772-4. [PMID: 20177645 DOI: 10.1039/b917056a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
gem-Dihydroperoxides were easily obtained from the corresponding carbonyl compounds in high yields through a catalyst-free method with aqueous H(2)O(2) (35%) in 1,2-dimethoxyethane at room temperature.
Collapse
Affiliation(s)
- Norihiro Tada
- Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | |
Collapse
|
30
|
Li Y, Hao HD, Wu Y. Facile Ring-Opening of Oxiranes by H2O2 Catalyzed by Phosphomolybdic Acid. Org Lett 2009; 11:2691-4. [DOI: 10.1021/ol900811m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yun Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hong-Dong Hao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yikang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Li Y, Hao HD, Zhang Q, Wu Y. A Broadly Applicable Mild Method for the Synthesis of gem-Diperoxides from Corresponding Ketones or 1,3-Dioxolanes. Org Lett 2009; 11:1615-8. [DOI: 10.1021/ol900262t] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hong-Dong Hao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qi Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yikang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
32
|
Chen X, She J, Shang ZC, Wu J, Zhang P. Room-Temperature Synthesis of Pyrazoles, Diazepines, β-Enaminones, and β-Enamino Esters Using Silica-Supported Sulfuric Acid as a Reusable Catalyst Under Solvent-Free Conditions. SYNTHETIC COMMUN 2009. [DOI: 10.1080/00397910802441551] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiang Chen
- a Department of Chemistry , Zhejiang University , Hangzhou, China
| | - Jin She
- a Department of Chemistry , Zhejiang University , Hangzhou, China
| | - Zhi-Cai Shang
- a Department of Chemistry , Zhejiang University , Hangzhou, China
| | - Jun Wu
- a Department of Chemistry , Zhejiang University , Hangzhou, China
| | - Peizhi Zhang
- b School of Biological and Chemical Engineering , Zhejiang University of Science and Technology , Hangzhou, China
| |
Collapse
|
33
|
Ghorai P, Dussault PH. Mild and efficient Re(VII)-catalyzed synthesis of 1,1-dihydroperoxides. Org Lett 2008; 10:4577-9. [PMID: 18783232 DOI: 10.1021/ol801859c] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Re2O7 in CH3CN is a remarkably efficient and mild catalyst for the peroxyacetalization of ketones, aldehydes, or acetals by H2O2 to generate 1,1-dihydroperoxides. Me3SiOReO3 and methyl rhenium trioxide (MTO) are also effective catalysts under these reaction conditions.
Collapse
Affiliation(s)
- Prasanta Ghorai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, USA
| | | |
Collapse
|