1
|
Różycka D, Kowalczyk A, Denel-Bobrowska M, Kuźmycz O, Gapińska M, Stączek P, Olejniczak AB. Acridine/Acridone-Carborane Conjugates as Strong DNA-Binding Agents with Anticancer Potential. ChemMedChem 2023; 18:e202200666. [PMID: 36734215 DOI: 10.1002/cmdc.202200666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Synthesis of acridine derivatives that act as DNA-targeting anticancer agents is an evolving field and has resulted in the introduction of several drugs into clinical trials. Carboranes can be of importance in designing biologically active compounds due to their specific properties. Therefore, a series of novel acridine analogs modified with carborane clusters were synthesized. The DNA-binding ability of these analogs was evaluated on calf thymus DNA (ct-DNA). Results of these analyses showed that 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propylamino]acridine (30) interacted strongly with ct-DNA, indicating its ability to intercalate into DNA, whereas 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]acridine (29) changed the B-form of ct-DNA to the Z form. Compound 30 demonstrated cytotoxicity, was able to inhibit cell proliferation, arrest the cell cycle in the S phase in the HeLa cancer cell line, and induced the production of reactive oxygen species (ROS). In addition, it was specifically localized in lysosomes and was a weak inhibitor of Topo IIα.
Collapse
Affiliation(s)
- Daria Różycka
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Marta Denel-Bobrowska
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Olga Kuźmycz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Agnieszka B Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| |
Collapse
|
2
|
Omolo KO, Bacsa J, Sadighi JP. Acridine Variations for Coordination Chemistry. Isr J Chem 2020. [DOI: 10.1002/ijch.202000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kevin O. Omolo
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia U.S.A
- present address: Intel Corporation, Chandler, AZ U.S.A
| | - John Bacsa
- X-Ray Crystallography CenterDepartment of Chemistry, Emory University Atlanta, Georgia U.S.A
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia U.S.A
| | - Joseph P. Sadighi
- School of Chemistry & BiochemistryGeorgia Institute of Technology Atlanta, Georgia, U.S.A
| |
Collapse
|
3
|
Solmont K, Boufroura H, Souibgui A, Fornarelli P, Gaucher A, Mahuteau-Betzer F, Ben Hassine B, Prim D. Divergent strategy for the synthesis of original dihydrobenzo- and dihydronaphtho-acridines. Org Biomol Chem 2015; 13:6269-77. [PMID: 25965873 DOI: 10.1039/c5ob00456j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward access to numerous novel substituted dihydrobenzo- and dihydronaphthoacridines is described using a unique molecular platform in two key steps. A large range of carbon-based substituents such as aromatic, vinyl, alkynyl fragments through Pd-catalysed couplings has been installed. The molecular diversity is extended to the introduction of aza-heterocycles and further authorizes the installation of alkylamino chains by means of Cu-promoted C-N bond formation. Possible access to quinolinium salts is also described. The methodology revealed convenient preparation of a wide panel of molecules that display various rigidity/flexibility and lipophilic/hydrophilic balances. Finally, the influence of structural modulations on the photophysical properties of these novel architectures is also studied. It is noteworthy that styryl and alkynyl derivatives are emissive in water (ϕF up to 12%).
Collapse
Affiliation(s)
- Kathleen Solmont
- Université de Versailles Saint-Quentin-en-Yvelines, Institut Lavoisier de Versailles, UMR CNRS 8180, 45, Avenue des Etats-Unis, 78035 Versailles cedex, France. damien.prim@.uvsq.fr
| | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
|