3
|
Pakrieva E, P. C. Ribeiro A, Kolobova E, M. D. R. S. Martins L, A. C. Carabineiro S, German D, Pichugina D, Jiang C, J. L. Pombeiro A, Bogdanchikova N, Cortés Corberán V, Pestryakov A. Supported Gold Nanoparticles as Catalysts in Peroxidative and Aerobic Oxidation of 1-Phenylethanol under Mild Conditions. NANOMATERIALS 2020; 10:nano10010151. [PMID: 31952186 PMCID: PMC7023489 DOI: 10.3390/nano10010151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
The efficiency of Au/TiO2 based catalysts in 1-phenylethanol oxidation was investigated. The role of support modifiers (La2O3 or CeO2), influence of gold loading (0.5% or 4%) and redox pretreatment atmosphere, catalyst recyclability, effect of oxidant: tert-butyl hydroperoxide (TBHP) or O2, as well as the optimization of experimental parameters of the reaction conditions in the oxidation of this alcohol were studied and compared with previous studies on 1-octanol oxidation. Samples were characterized by temperature-programmed oxygen desorption (O2-TPD) method. X-ray photoelectron spectroscopy (XPS) measurements were carried out for used catalysts to find out the reason for deactivation in 1-phenylethanol oxidation. The best catalytic characteristics were shown by catalysts modified with La2O3, regardless of the alcohol and the type of oxidant. When O2 was used, the catalysts with 0.5% Au, after oxidative pretreatment, showed the highest activity in both reactions. The most active catalysts in 1-phenylethanol oxidation with TBHP were those with 4% Au and the H2 treatment, while under the same reaction conditions, 0.5% Au and O2 treatment were beneficial in 1-octanol oxidation. Despite the different chemical nature of the substrates, it seems likely that Au+(Auδ+) act as the active sites in both oxidative reactions. Density functional theory (DFT) simulations confirmed that the gold cationic sites play an essential role in 1-phenylethanol adsorption.
Collapse
Affiliation(s)
- Ekaterina Pakrieva
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (D.G.); (A.P.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.P.C.R.); (L.M.D.R.S.M.); (A.J.L.P.)
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain;
- Correspondence: (E.P.); (S.A.C.C.)
| | - Ana P. C. Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.P.C.R.); (L.M.D.R.S.M.); (A.J.L.P.)
| | - Ekaterina Kolobova
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (D.G.); (A.P.)
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.P.C.R.); (L.M.D.R.S.M.); (A.J.L.P.)
| | - Sónia A. C. Carabineiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.P.C.R.); (L.M.D.R.S.M.); (A.J.L.P.)
- Correspondence: (E.P.); (S.A.C.C.)
| | - Dmitrii German
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (D.G.); (A.P.)
| | - Daria Pichugina
- Department of Chemistry, Moscow State University, 1–3 Leninskiye Gory, 119991 Moscow, Russia; (D.P.); (C.J.)
| | - Ce Jiang
- Department of Chemistry, Moscow State University, 1–3 Leninskiye Gory, 119991 Moscow, Russia; (D.P.); (C.J.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.P.C.R.); (L.M.D.R.S.M.); (A.J.L.P.)
| | - Nina Bogdanchikova
- Centro de Nanocienciasy Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22800, Mexico;
| | - Vicente Cortés Corberán
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain;
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (D.G.); (A.P.)
| |
Collapse
|
6
|
Zhang Y, Huo W, Zhang HY, Zhao J. Synthesis of an oligomer ruthenium complex and its catalysis in the oxidation of alcohols. RSC Adv 2017. [DOI: 10.1039/c7ra07227a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The catalyst showed high efficiency in the oxidation of alcohols to ketones or acids and can be recycled several times.
Collapse
Affiliation(s)
- Yuecheng Zhang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- PR China
| | - Wenge Huo
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- PR China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- PR China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- PR China
| |
Collapse
|
9
|
Zhang Y, Sun X, Zhang H, Zhao J. Immobilization of Ru(terpyridine)(2,6-pyridinedicarboxylate) onto MCM-41 and its catalysis in the oxidation of alcohols. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuecheng Zhang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 PR China
| | - Xiaochen Sun
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 PR China
| | - Hongyu Zhang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 PR China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 PR China
| |
Collapse
|