1
|
Gharaghani MA, Dehdarirad A, Mahdizadeh H, Hashemi H, Nasiri A, Samaei MR, Mohammadpour A. Photocatalytic degradation of Acid Red 18 by synthesized AgCoFe 2O 4@Ch/AC: Recyclable, environmentally friendly, chemically stable, and cost-effective magnetic nano hybrid catalyst. Int J Biol Macromol 2024; 269:131897. [PMID: 38677671 DOI: 10.1016/j.ijbiomac.2024.131897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Chitosan (Ch) is a linear biodegradable natural carbohydrate polymer and the most appealing biopolymer, such as low-cost biodegradability, biocompatibility, hydrophilicity, and non-toxicity. In this case, Ch was utilized to synthesize AgCoFe2O4@Ch/Activated Carbon (AC) by the modified microwave-assisted co-precipitation method. The physical and chemical structure of magnetic nanocomposites was analyzed and characterized by Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Energy Dispersive Spectroscopy (EDS), Diffuse Reflection Spectroscopy (DRS), Value stream mapping (VSM), Fourier transform spectroscopy (FTIR) and BET. The effects of various parameters on the removal of dye (Acid Red18), including catalyst dose, dye concentration, pH, and time were studied. Results showed that the highest removal efficiencies were 96.68 % and 84 % for the synthetic sample and actual wastewater, respectively, in optimal conditions (pH: 3, the initial dye concentration: 10 mgL-1, the catalyst dose: 0.14 gL-1, time: 50 min). Mineralization, according to the COD analysis, was 89.56 %. Photocatalytic degradation kinetics of Acid Red 18 followed pseudo-first order and Langmuir-Hinshelwood with constants of kc = 0.12 mg L-1 min-1 and KL-H = 0.115 Lmg-1. Synthesized photocatalytic AgCoFe2O4@Ch/AC showed high stability and after five recycling cycles was able to remove the pollutant with an efficiency of 85.6 %. So, the synthesized heterogenous magnetic nanocatalyst AgCoFe2O4@Ch/AC was easily recycled from aqueous solutions and it can be used in the removal of dyes from industries with high efficiency.
Collapse
Affiliation(s)
- Majid Amiri Gharaghani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Dehdarirad
- Department of Environmental Health Engineering, Sirjan Scholl of Medical Sciences, Sirjan, Iran
| | - Hakimeh Mahdizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Hashemi
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
2
|
Yuan C, Sun F, Liu H, Chen T, Chu Z, Wang H, Zou X, Zhai P, Chen D. Synthesis of CaWO4 as a Photocatalyst for Degradation of Methylene Blue and Carmine under Ultraviolet Light Irradiation. Processes (Basel) 2023. [DOI: 10.3390/pr11041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Photocatalysis is considered a promising method for wastewater treatment; however, most synthesized photocatalysts have complex structures and are costly. Thus, in this study, a novel CaWO4 sample was synthesized by a co-precipitation method in one step. The characteristic results show that CaWO4 has good dispersibility, a large specific surface area, and good photoresponse under UV light. The synthesized CaWO4 can be used to degrade methylene blue (MB) and carmine (CR) under UV light without the addition of oxidants. The effects of a water matrix, including pH value, solid–liquid ratio, light intensity, and initial concentration of pollutants on photocatalytic degradation were studied. According to the optimization of these factors, the optimal photocatalytic degradation condition was found under the catalyst concentration of 1.0 g/L and ultraviolet light intensity of 80 W. The optimal pH is 8.2 for the MB system and 6.0 for the CR system. The optimal photocatalytic degradation of MB and CR at 100 mg/L can be achieved as 100%. According to the results of scavenger experiments, holes and hydroxyl radicals dominate the degradation of MB while hydroxyl radicals and superoxide anions are mainly responsible for the degradation of CR. Further analyses showed that photogenerated electrons generated on the surface of the CaWO4 can form electron–hole pairs, thereby producing hydroxyl radicals and superoxide anions to degrade dyes. In addition, the CaWO4 has a good cycling performance in the process of degrading MB (more than 80% after five cycles). It provides a new idea for the photocatalytic degradation of dyes using mineral-like materials.
Collapse
|
3
|
Khan A, Bhoi RG, Saharan VK, George S. Green calcium-based photocatalyst derived from waste marble powder for environmental sustainability: A review on synthesis and application in photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86439-86467. [PMID: 35688984 DOI: 10.1007/s11356-022-20941-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Calcium, with its excellent adsorptive property and higher permissible limits in the environment, emerges as an effective wastewater treatment earth metal. Most of the catalysts, photocatalysts, and adsorbents reported in the literature have heavy metal complex, which creates a leaching problem. Majorly, precursors used for the synthesis of heterogeneous catalysts for wastewater treatment are costly. Therefore, the use of such precursors would be not suitable and feasible approach from an economic point of view. This review work is focused on giving an overview of the utilisation of calcium-based catalysts (adsorbents and photocatalyst) for the removal/degradation of various types of dye water pollutants and summarises the reported effects of calcium as a base on the removal efficiency of dopants. In this article, an extensive literature survey is presented on the various photocatalysts developed and the different syntheses involved in their preparation. As the utilisation of marble powder is a green sustainable approach, the scope of various calcium-based photocatalysts and their application is presented. This article also aims for the elementary and inclusive determination of the effect of introducing calcium as a base for different catalysts and adsorbents.
Collapse
Affiliation(s)
- Arshia Khan
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Rohidas Gangaram Bhoi
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Suja George
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India.
| |
Collapse
|
4
|
Facile synthesis of CaWO4 nanoparticles incorporated on porous carbons with improved photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Liu SL, Liu B, Xiang Z, Xu L, Wang XF, Liu Y, Wang X. Fabrication of CaWO4 microspheres with enhanced sonocatalytic performance for ciprofloxacin removal in aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116365] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Khan MS, Khalid M, Ahmad MS, Shahid M, Ahmad M. Catalytic activity of Mn(III) and Co(III) complexes: evaluation of catechol oxidase enzymatic and photodegradation properties. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04127-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Sahmi A, Bensadok K, Trari M. Photoelectrochemical properties of CaWO4 synthetized by chemical route. Application to the phenobarbital electro-photocatalysis. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.08.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Wang K, Ji Q, Li H, Guan F, Zhang D, Feng H, Fan H. Synthesis and antibacterial activity of silver@carbon nanocomposites. J Inorg Biochem 2016; 166:64-67. [PMID: 27835776 DOI: 10.1016/j.jinorgbio.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 01/13/2023]
Abstract
In this work, hollow multiple-Ag-nanoclustes- C-shell nanocomposites (Ag@C) were synthesized by using silane coupling agent to graft carbon dots (CDs) with silver nanoparticles (AgNPs). CDs act as coating and stabilizing agent, protecting AgNPs from aggregation and oxidation. The resulting Ag@C nanocomposites demonstrate strong bactericidal effect against both gram-negative and gram-positive bacteria in the disk diffusion test. Cellular toxicity evaluation was performed using MTT assay. Meanwhile, the as-prepared Ag@C nanocomposites show a good biocompatibility.
Collapse
Affiliation(s)
- Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Qingjuan Ji
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Feng Guan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Huixia Feng
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haiyan Fan
- Chemistry Department, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
11
|
Guo F, Shi W, Cai Y, Shao S, Zhang T, Guan W, Huang H, Liu Y. Sheet-on-sphere structured Ag/AgBr@InVO4 heterojunctions and enhanced visible-light photocatalytic activity. RSC Adv 2016. [DOI: 10.1039/c6ra20657c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sheet-on-sphere Ag/AgBr@InVO4 displayed excellent photocatalytic degradation of RhB, which was attributed to enhanced visible-light absorption and anti-combination of electrons/holes through it's heterostructure.
Collapse
Affiliation(s)
- Feng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- Xi'an 710064
| | - Weilong Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- PR China
| | - Yi Cai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- Xi'an 710064
| | - Shuwen Shao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- Xi'an 710064
| | - Tao Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- Xi'an 710064
| | - Weisheng Guan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region
- Ministry of Education
- School of Environmental Science and Engineering
- Chang'an University
- Xi'an 710064
| | - Hui Huang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- PR China
| | - Yang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
12
|
Dai M, Li HX, Lang JP. New approaches to the degradation of organic dyes, and nitro- and chloroaromatics using coordination polymers as photocatalysts. CrystEngComm 2015. [DOI: 10.1039/c5ce00619h] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Hu J, Men J, Liu Y, Huang H, Jiao T. One-pot synthesis of Ag-modified LaMnO3–graphene hybrid photocatalysts and application in the photocatalytic discoloration of an azo-dye. RSC Adv 2015. [DOI: 10.1039/c5ra09585a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag-modified LaMnO3–graphene nanocomposites possess excellent photocatalytic activity for Direct Green BE photodegradation and the active hole generated in Ag/LaMnO3–graphene plays a key role.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Metastable Materials Science & Technology
- Yanshan University
- Qinhuangdao
- P.R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Jie Men
- Hebei Key Laboratory of Applied Chemistry
- Department of Environment and Chemistry
- Yanshan University
- Qinhuangdao
- P.R. China
| | - Yuanyuan Liu
- Hebei Key Laboratory of Applied Chemistry
- Department of Environment and Chemistry
- Yanshan University
- Qinhuangdao
- P.R. China
| | - Hao Huang
- State Key Laboratory of Metastable Materials Science & Technology
- Yanshan University
- Qinhuangdao
- P.R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science & Technology
- Yanshan University
- Qinhuangdao
- P.R. China
| |
Collapse
|