1
|
Xu Y, Lin J, Wu X, Xu X, Zhang D, Xie Y, Pan T, He Y, Wu A, Shao G. TiO2-Based Bioprobe Enabling Excellent SERS Activity in Detection of Diverse Circulating Tumor Cells. J Mater Chem B 2022; 10:3808-3816. [DOI: 10.1039/d2tb00464j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor cells (CTCs), can be the seeds of tumor metastasis, and are closely linked to cancer-related death. Fast and effective detection of CTCs is important for early diagnosis of...
Collapse
|
2
|
Xu Y, Zhang D, Lin J, Wu X, Xu X, Akakuru OU, Zhang H, Zhang Z, Xie Y, Wu A, Shao G. Ultrahigh SERS Activity of TiO2@Ag Nanostructure leveraged for Accurately Detecting CTCs in peripheral blood. Biomater Sci 2022; 10:1812-1820. [PMID: 35234756 DOI: 10.1039/d1bm01821c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor cells (CTCs) usually shed from primary and metastatic tumors serve as an important tumor marker, and easily cause fatal distant metastasis in cancer patients. Accurately and effectively detecting...
Collapse
Affiliation(s)
- Yanping Xu
- Second clinical college, Zhejiang Chinese Medical University, Hang Zhou 310053, China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Dinghu Zhang
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Xiaoxia Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Xiawei Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Zhewei Zhang
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Yujiao Xie
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| | - Guoliang Shao
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
3
|
Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, Amjad US, Ur Rehman MS, Faisal A, Rehman F. Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO 2 composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121623. [PMID: 31753670 DOI: 10.1016/j.jhazmat.2019.121623] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 05/04/2023]
Abstract
TiO2 based photocatalysts are extensively used for textile wastewater treatment as they are ecofriendly, inexpensive, easily available, nontoxic and have higher photostabililty. However, their wider band gap, charge carrier's recombination, and utilization of light absorbance limits their performance. In the present work, a hybrid biochar-TiO2 composite (BCT) has been synthesized by a facile synthesis strategy to overcome these problems. These photocatalysts are characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) to evaluate their crystallinity, morphology, functional groups, bandgap energy and charge separation properties, respectively. The photodegradation of simulated textile wastewater is analyzed using hybrid composites. The hybrid biochar-TiO2 composite showed higher charge separation, slow recombination of electron-hole pairs, and enhanced light absorption as compared to control (pure TiO2 and BC alone). 99.20 % photodegradation efficiency of dye-simulated wastewater is achieved employing optimum hybrid composite, while the pure biochar and TiO2 samples exhibits 85.20 % and 42.60 % efficiencies, respectively. The maximum adsorption capacity is obtained for hybrid biochar-TiO2 sample, 74.30 mgg-1 in comparison to biochar (30.40 mgg-1) and pure TiO2 (1.50 mgg-1). The results show that hybrid biochar-TiO2 composites can perform in the target application of organic industrial pollutant removal.
Collapse
Affiliation(s)
- Tahir Fazal
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan; Department of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Abdul Razzaq
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fahed Javed
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ainy Hafeez
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Naim Rashid
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ume Salma Amjad
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Abrar Faisal
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fahad Rehman
- Biorefinery Engineering and Microfluidics (BEAM) Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
5
|
Guo SP, Chi Y, Zou JP, Xue HG. Crystal and electronic structures, and photoluminescence and photocatalytic properties of α-EuZrS3. NEW J CHEM 2016. [DOI: 10.1039/c6nj02106a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel crystalline α-EuZrS3 shows Eu2+ photoluminescence and is photocatalytically active towards the decomposition of methylene blue under visible light or simulated sunlight irradiation.
Collapse
Affiliation(s)
- Sheng-Ping Guo
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Yang Chi
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang
- P. R. China
| | - Huai-Guo Xue
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|