1
|
Jevtovic V, Golubović L, Alshammari B, Alshammari MR, Rajeh SY, Alreshidi MA, Alshammari OAO, Rakić A, Dimić D. Crystal Structure, Theoretical Analysis, and Protein/DNA Binding Activity of Iron(III) Complex Containing Differently Protonated Pyridoxal- S-Methyl-Isothiosemicarbazone Ligands. Int J Mol Sci 2024; 25:7058. [PMID: 39000166 PMCID: PMC11241004 DOI: 10.3390/ijms25137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Pyridoxal-S-methyl-isothiosemicarbazone (PLITSC) is a member of an important group of ligands characterized by different complexation modes to various transition metals. In this contribution, a new complex containing two differently protonated PLITSC ligands ([Fe(PLITSC-H)(PLITSC)]SO4)∙2.5H2O was obtained. The crystal structure was solved by the X-ray analysis and used further for the optimization at B3LYP/6-311++G(d,p)(H,C,N,O,S)/def2-TZVP(Fe) level of theory. Changes in the interaction strength and bond distance due to protonation were observed upon examination by the Quantum Theory of Atoms in Molecules. The protein binding affinity of [Fe(PLITSC-H)(PLITSC)]SO4 towards transport proteins (Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA)) was investigated by the spectrofluorimetric titration and molecular docking. The interactions with the active pocket containing fluorescent amino acids were examined in detail, which explained the fluorescence quenching. The interactions between complex and DNA were followed by the ethidium-bromide displacement titration and molecular docking. The binding along the minor groove was the dominant process involving complex in the proximity of DNA.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Luka Golubović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Badriah Alshammari
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | | | - Sahar Y Rajeh
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Maha Awjan Alreshidi
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Odeh A O Alshammari
- Department of Chemistry, College of Science, University Ha'il, Ha'il 81451, Saudi Arabia
| | - Aleksandra Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Peñas-Sanjuán A, Chica-Armenteros JJ, Cruz-Sánchez R, García-Gallarín C, Melguizo M. Sequential Nitrile Amidination-Reduction as a Straightforward Procedure to Selective Linear Polyamine Preparation. J Org Chem 2023; 88:17274-17283. [PMID: 38006401 PMCID: PMC10729039 DOI: 10.1021/acs.joc.3c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
A straightforward strategy toward the efficient synthesis of linear saturated polyamines containing 1,2-diaminoethane and/or 1,3-diaminopropane fragments has been developed. The procedure is based on the chemistry of 5- and 6-membered cyclic amidines, including their efficient synthesis from nitrile precursors and subsequent chemoselective reductive-opening by a borane-dimethyl sulfide complex. This two-step procedure provides a robust methodology for the synthesis of linear polyamine skeletons under nonharsh conditions and free of using selective protective groups or tedious workups.
Collapse
Affiliation(s)
- Antonio Peñas-Sanjuán
- Departamento de Química Inorgánica
y Orgánica. Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Jose J. Chica-Armenteros
- Departamento de Química Inorgánica
y Orgánica. Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Rubén Cruz-Sánchez
- Departamento de Química Inorgánica
y Orgánica. Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Celeste García-Gallarín
- Departamento de Química Inorgánica
y Orgánica. Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | - Manuel Melguizo
- Departamento de Química Inorgánica
y Orgánica. Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| |
Collapse
|
3
|
Wang L, Zheng Y, Zhou X, Wang H, Yan Q, Wang W, Chen F. Synthesis of α-Aryl Nitriles via Nucleophilic Substitution of α-Cyanohydrin Methanesulfonates with Malonates. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Jevtović V, Hamoud H, Al-Zahrani S, Alenezi K, Latif S, Alanazi T, Abdulaziz F, Dimić D. Synthesis, Crystal Structure, Quantum Chemical Analysis, Electrochemical Behavior, and Antibacterial and Photocatalytic Activity of Co Complex with Pyridoxal-(S-Methyl)-isothiosemicarbazone Ligand. Molecules 2022; 27:4809. [PMID: 35956756 PMCID: PMC9369583 DOI: 10.3390/molecules27154809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/17/2023] Open
Abstract
New complex Co(III) with ligand Pyridoxal-S-methyl-isothiosemicarbazone, (PLITSC) was synthesized. X-ray analysis showed the bis-ligand octahedral structure of the cobalt complex [Co(PLITSC-H)2]BrNO3·CH3OH (compound 1). The intermolecular interactions governing the crystal structure were described by the Hirsfeld surface analysis. The structure of compound 1 and the corresponding Zn complex (([Zn(PLTSC)(H2O)2]SO4·H2O)) were optimized at the B3LYP/6-31 + G (d,p)/LanL2DZ level of theory, and the applicability was assessed by comparison with the crystallographic structure. The natural bond orbital analysis was used for the discussion on the stability of formed compounds. The antibacterial activity of obtained complexes towards S. aureus and E. coli was determined, along with the effect of compound 1 on the formation of free radical species. Activity of compound 1 towards the removal of methylene blue was also investigated. The voltammograms of these compounds showed the reduction of metal ions, as well as the catalyzed reduction of CO2 in acidic media.
Collapse
Affiliation(s)
- Violeta Jevtović
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Haneen Hamoud
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salma Al-Zahrani
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Khalaf Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Tahani Alanazi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Gayathri S, Viswanathamurthi P, Naveen K, Murugan K. Convenient synthesis of symmetrical azines from alcohols and hydrazine catalyzed by ruthenium(II) hydrazone complex in air. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Development of thiosemicarbazone-based transition metal complexes as homogeneous catalysts for various organic transformations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Adams RW, John RO, Blazina D, Eguillor B, Cockett MCR, Dunne JP, López‐Serrano J, Duckett SB. Contrasting Photochemical and Thermal Catalysis by Ruthenium Arsine Complexes Revealed by Parahydrogen Enhanced NMR Spectroscopy. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph W. Adams
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: School of Chemistry University of Manchester Manchester M13 9PL UK
| | - Richard O. John
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: Department of Physics University of York Heslington, York YO10 5DD UK
| | - Damir Blazina
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Beatriz Eguillor
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza – CSIC 50009 Zaragoza Spain
| | | | - John P. Dunne
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Joaquín López‐Serrano
- Department of Chemistry University of York Heslington, York YO10 5DD UK
- Current address: Departmento de Química Inorgánica Universidad de Sevilla 41012 Sevilla, Andalucía Spain
| | - Simon B. Duckett
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| |
Collapse
|
8
|
Saha R, Mukherjee A, Bhattacharya S. Development of a ruthenium–aquo complex for utilization in synthesis and catalysis for selective hydration of nitriles and alkynes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium(ii)–aquo complex serves as a precursor for the synthesis of new ternary complexes and also as an efficient catalyst for selective hydration of aryl nitriles to aryl amides and aryl alkynes to aryl aldehydes.
Collapse
Affiliation(s)
- Rumpa Saha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700 032, India
| |
Collapse
|
9
|
Electrocatalytic hydrogen evolution upon reduction of pyridoxal semicarbazone and thiosemicarbazone-based Cu(II) complexes. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc210520050a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The growing global demand for renewable energy sources has pushed renewable, green energy sources to the forefront, among which the production of hydrogen gas from water occupies a significant place. To realize this goal, researchers across the globe are developing various systems that could swiftly catalyze the hydrogen evolution reaction (HER) in the highest possible yield. In the present work, the electrocatalytic HER performances of pyridoxal semicarbazone- and thiosemicarbazone-based Cu(II) complexes, i.e., ([Cu(PLSC)Cl2] and [Cu(PLTSC-H)H2O]Br?H2O) are reported. It has been unambiguously demonstrated that the complexes exhibit enviable level of HER catalytic activity. The catalytic activity of the complexes was not only the function of central metal but it was also controlled by the nature of the coordinating ligand.
Collapse
|
10
|
Ruthenium(II) complexes bearing bidentate acylthiourea ligands for direct oxidation of amine α-carbon to amide. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Recent reports on Pyridoxal derived Schiff base complexes. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pyridoxal and Pyridoxal 5-phosphate are two among the six aqua soluble vitamers of vitamin B6. They can form Schiff bases readily due to the presence of aldehyde group. Schiff bases can offer diverse coordination possibilities for many transition metals as has been found in a large volume of research till now. The coordination complexes thus formed gives insight into the active core structure and enzymatic activities of vit B6 containing enzymes. Apart from that, these complexes have been found useful as catalysts for synthesis of fine chemicals, as sensors and for their diverse biological activities.
Collapse
|
12
|
Synthesis, spectroscopic characterization and quantum chemical studies of a dioxomolybdenum(VI) complex with an N,S-substituted pyridoxal thiosemicarbazone. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Vijayapritha S, Viswanathamurthi P. New half-sandwich (η6-p-cymene)ruthenium(II) complexes with benzothiazole hydrazone Schiff base ligand: Synthesis, structural characterization and catalysis in transamidation of carboxamide with primary amines. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Murugan K, Vijayapritha S, Kavitha V, Viswanathamurthi P. Versatile formation of Ru(II) hydrazone complexes: Structure, theoretical studies and catalytic activity in α-alkylation. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry Michigan State University East Lansing Michigan 48823
| |
Collapse
|
16
|
Bal-Demirci T, Güveli Ş, Yeşilyurt S, Özdemir N, Ülküseven B. Thiosemicarbazone ligand, nickel(II) and ruthenium(II) complexes based on vitamin B6 vitamer: The synthesis, different coordination behaviors and antioxidant activities. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Nehar OK, Mahboub R, Louhibi S, Roisnel T, Aissaoui M. New thiosemicarbazone Schiff base ligands: Synthesis, characterization, catecholase study and hemolytic activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Ruthenium(II) carbonyl complexes containing thiourea ligand: Enhancing the biological assets through biomolecules interaction and enzyme mimetic activities. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2357-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Synthesis, characterization and X-ray crystal structure of an iron(III) complex of a tripodal pyridoxal Schiff base ligand: effects of positional disorder on its magnetic properties. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Ramachandran R, Prakash G, Viswanathamurthi P, Malecki J. Ruthenium(II) complexes containing phosphino hydrazone/thiosemicarbazone ligand: An efficient catalyst for regioselective N-alkylation of amine via borrowing hydrogen methodology. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Jakusch T, Kozma K, Enyedy ÉA, May NV, Roller A, Kowol CR, Keppler BK, Kiss T. Complexes of pyridoxal thiosemicarbazones formed with vanadium(IV/V) and copper(II): Solution equilibrium and structure. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Elsayed SA, Noufal AM, El-Hendawy AM. Synthesis, structural characterization and antioxidant activity of some vanadium(IV), Mo(VI)/(IV) and Ru(II) complexes of pyridoxal Schiff base derivatives. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Synthesis of heteroleptic copper(I) complexes with phosphine-functionalized thiosemicarbazones: An efficient catalyst for regioselective N -alkylation reactions. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Murašková V, Szabó N, Pižl M, Hoskovcová I, Dušek M, Huber Š, Sedmidubský D. Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with C C bond formation – Structure, spectral and magnetic properties. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Admasu D, Reddy DN, Mekonnen KN. Trace determination of zinc in soil and vegetable samples by spectrophotometry using pyridoxal thiosemicarbazone and 2-acetyl pyridine thiosemicarbazone. COGENT CHEMISTRY 2016; 2:1249602. [DOI: 10.1080/23312009.2016.1249602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2023]
Affiliation(s)
- Daniel Admasu
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
- Ezana Mining Development Analytical Laboratory, PLC, Mekelle 788, Ethiopia
| | - Desam Nagarjuna Reddy
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
| |
Collapse
|
26
|
Ruthenium Carbonyl Complexes with 4-R-Benzaldehyde Thiosemicarbazone as an Ancillary Ligand: Synthesis and, Structural, Spectral and Electrochemical Properties. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2016. [DOI: 10.1007/s40010-016-0303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Palladium(II) pyridoxal thiosemicarbazone complexes as efficient and recyclable catalyst for the synthesis of propargylamines by a three‐component coupling reactions in ionic liquids. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Nirmala M, Saranya G, Viswanathamurthi P. Ruthenium(II) complexes incorporating salicylaldiminato-functionalized N-heterocyclic carbene ligands as efficient and versatile catalysts for hydration of organonitriles. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Synthesis and crystal structure of a novel ruthenium(II) complex with in situ generated dithiobiurea ligand. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Selvamurugan S, Ramachandran R, Prakash G, Viswanathamurthi P, Malecki JG, Endo A. Ruthenium(II) carbonyl complexes containing bidentate 2-oxo-1,2-dihydroquinoline-3-carbaldehyde hydrazone ligands as efficient catalysts for catalytic amidation reaction. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Ruthenium(II) carbonyl complexes designed with arsine and PNO/PNS ligands as catalysts for N-alkylation of amines via hydrogen autotransfer process. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.05.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Anitha P, Manikandan R, Prakash G, Pachiyappan B, Viswanathamurthi P, Malecki J. Ruthenium(II) 8-quinolinolates: Synthesis, characterization, crystal structure and catalysis in the synthesis of 2-oxazolines. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Bahrami K, Khodaei MM, Roostaei M. Sodium Azide as a Catalyst for the Hydration of Nitriles to Primary Amides in Water. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14296361042516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective conversion of aromatic nitriles to primary amides has been accomplished using sodium azide. The corresponding amides were obtained efficiently in excellent yields. This reaction was carried out under eco-friendly conditions using water in the absence of organic solvents.
Collapse
Affiliation(s)
- Kiumars Bahrami
- Department of Chemistry, Razi University, Kermanshah 67149-67346, Iran
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67149-67346, Iran
| | | | - Mohsen Roostaei
- Department of Chemistry, Razi University, Kermanshah 67149-67346, Iran
| |
Collapse
|