1
|
Abstract
Fulfilling the direct inert C–H bond functionalization of raw materials that are earth-abundant and commercially available for the synthesis of diverse targeted organic compounds is very desirable and its implementation would mean a great reduction of the synthetic steps required for substrate prefunctionalization such as halogenation, borylation, and metalation. Successful C–H bond functionalization mainly resorts to homogeneous transition-metal catalysis, albeit sometimes suffering from poor catalyst reusability, nontrivial separation, and severe biotoxicity. TiO2 photocatalysis displays multifaceted advantages, such as strong oxidizing ability, high chemical stability and photostability, excellent reusability, and low biotoxicity. The chemical reactions started and delivered by TiO2 photocatalysts are well known to be widely used in photocatalytic water-splitting, organic pollutant degradation, and dye-sensitized solar cells. Recently, TiO2 photocatalysis has been demonstrated to possess the unanticipated ability to trigger the transformation of inert C–H bonds for C–C, C–N, C–O, and C–X bond formation under ultraviolet light, sunlight, and even visible-light irradiation at room temperature. A few important organic products, traditionally synthesized in harsh reaction conditions and with specially functionalized group substrates, are continuously reported to be realized by TiO2 photocatalysis with simple starting materials under very mild conditions. This prominent advantage—the capability of utilizing cheap and readily available compounds for highly selective synthesis without prefunctionalized reactants such as organic halides, boronates, silanes, etc.—is attributed to the overwhelmingly powerful photo-induced hole reactivity of TiO2 photocatalysis, which does not require an elevated reaction temperature as in conventional transition-metal catalysis. Such a reaction mechanism, under typically mild conditions, is apparently different from traditional transition-metal catalysis and beyond our insights into the driving forces that transform the C–H bond for C–C bond coupling reactions. This review gives a summary of the recent progress of TiO2 photocatalytic C–H bond activation for C–C coupling reactions and discusses some model examples, especially under visible-light irradiation.
Collapse
|
2
|
Pavan MJ, Fridman H, Segalovich G, Shames AI, Lemcoff NG, Mokari T. Photoxidation of Benzyl Alcohol with Heterogeneous Photocatalysts in the UV Range: The Complex Interplay with the Autoxidative Reaction. ChemCatChem 2018. [DOI: 10.1002/cctc.201800284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mariela J. Pavan
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| | - Helena Fridman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| | - Gal Segalovich
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| | - Alexander I. Shames
- Department of Physics; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| | - Taleb Mokari
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| |
Collapse
|
3
|
Wakamatsu H, Okada Y, Sugai M, Hussaini SR, Chiba K. Photo-Triggered Fluorometric Hydrophobic Benzyl Alcohol for Soluble Tag-Assisted Liquid-Phase Peptide Synthesis. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hiroki Wakamatsu
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Yohei Okada
- Department of Chemical Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Masae Sugai
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Syed R. Hussaini
- Department of Chemistry and Biochemistry; The University of Tulsa, Keplinger Hall; 800 South Tucker Drive Tulsa OK 74104 United States
| | - Kazuhiro Chiba
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| |
Collapse
|
4
|
Lugo-Vega CS, Serrano-Rosales B, de Lasa H. Energy efficiency limits in Photo-CREC-Air photocatalytic reactors. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Selective photooxidation of ortho-substituted benzyl alcohols and the catalytic role of ortho-methoxybenzaldehyde. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|