1
|
Saini N, Negi M, Yadav P, Singh R. Oxidative desulfurization of fuels using alcohol-based DESs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33093-4. [PMID: 38584233 DOI: 10.1007/s11356-024-33093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
The presence of sulfur-containing compounds in fuel oil has become a major global issue due to their release of toxic sulfur dioxide. Hydrodesulfurization is a commonly used method for removing sulfur from fuel. However, new desulfurization techniques have been developed recently as hydrodesulfurization (HDS) is ineffective in removing refractory sulfur, e.g., BT, DBT, 4-MDBT. In this study, a series of deep eutectic solvent (DES) using ChCl, salicylic acid, oxalic acid, citric acid, and adipic acid as hydrogen bond acceptors and MeOH, EtOH, BuOH, EG, DEG, and TEG as hydrogen bond donors on different mole ratios were synthesized and then investigated the efficiency of these DESs in extracting sulfur from model and diesel fuel. Densities, viscosity, refractive index, and FTIR spectra of synthesized DESs were recorded. It also included oxidative desulfurization, which is a promising approach offering high selectivity, mild reaction conditions, low cost, and high efficiency. Hydrogen peroxide was selected as the oxidant in this study due to its excellent performance, commercial availability, and high proportion of active oxygen. [Citric acid: TEG] [1:7] and [adipic acid: TEG] [1:8] were found to be the most effective, removing up to 44.07% and 42.53% sulfur from model oil during single-stage extraction at 30 °C using a solvent-to-feed ratio of 1.0 and was increased to 86.87% and 85.06% using successive extraction up to the fourth stage. On oxidation, extraction efficiencies were reported to be 98.98%, 87.79%, and 56.25% and 96.96%, 81.22%, and 44.51% for model oil containing DBT and diesel 1 and diesel 2 with DES [citric acid: TEG] [1:7] and [adipic acid: TEG] [1:8] respectively at 30 °C using a solvent-to-feed ratio of 1.0. The study found that [citric acid: TEG] [1:7] exhibits better extraction performance in the deep desulfurization of fuels at an extraction temperature of 30 °C.
Collapse
Affiliation(s)
- Nisha Saini
- CSIR-Indian Institute of Petroleum Dehradun, Dehradun, Uttarakhand, India.
| | - Mansi Negi
- Department of Chemistry, Doon University, Dehradun, Uttarakhand, India
| | - Pooja Yadav
- CSIR-Indian Institute of Petroleum Dehradun, Dehradun, Uttarakhand, India
| | - Rajkumar Singh
- CSIR-Indian Institute of Petroleum Dehradun, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Fan K, Yang B, Yu S, Yang R, Zhang L, Chi W, Yin M, Wu H, Guo J. Ternary choline chloride/benzene sulfonic acid/ethylene glycol deep eutectic solvents for oxidative desulfurization at room temperature. RSC Adv 2023; 13:25888-25894. [PMID: 37655352 PMCID: PMC10466083 DOI: 10.1039/d3ra02524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Deep eutectic solvents (DESs) have been extensively studied as promising green solvents to attain a better removal efficiency of sulfide. A new DES system formed from choline chloride (ChCl), benzene sulfonic acid (BSA), and ethylene glycol (EG) as a class of ternary DESs was prepared and used in the oxidative desulfurization (ODS) of different sulfides. Ternary DESs have distinct advantages such as volatility and high activity compared with organic acid-based binary DESs. Under the optimum conditions with VDES/VOil = 1 : 5, O/S (molar ratio of oxygen to sulfur) = 5, and T = 25 °C, the desulfurization efficiencies of dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and benzothiophene (BT) were all achieved to 100% in 2 h. Through experimental and density functional theory (DFT) calculation methods, this new system as a class of ternary DESs shows good stability and excellent desulfurization performance at room temperature. The investigation of this study could supply a new idea of ternary DESs for oxidative desulfurization.
Collapse
Affiliation(s)
- Ke Fan
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430073 P. R. China +86-27-87194980
| | - Biao Yang
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430073 P. R. China +86-27-87194980
| | - Shanshan Yu
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430073 P. R. China +86-27-87194980
| | - Rongguang Yang
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430073 P. R. China +86-27-87194980
| | - Linfeng Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430073 P. R. China +86-27-87194980
| | - Weijie Chi
- School of Science, Hainan University Haikou Hainan 570228 PR China
| | - Minghao Yin
- China Electronic Product Reliability and Environmental Testing Research Institute Guangzhou 511370 Guangdong P. R. China
| | - Huadong Wu
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430073 P. R. China +86-27-87194980
| | - Jia Guo
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430073 P. R. China +86-27-87194980
| |
Collapse
|
3
|
Zhang J, Yin J, Zhang Y, Zhu T, Ran H, Jiang W, Li H, Li H, Zhang M. Insights into the formation mechanism of aliphatic acid-choline chloride deep eutectic solvents by theoretical and experimental research. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Mohammed MY, Ali AM, Albayati TM. Choline chloride-based deep eutectic solvents for ultrasonic-assisted oxidative desulfurization of actual heavy crude oil. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Julião D, Gomes AC, Cunha-Silva L, Pillinger M, Gonçalves IS, Balula SS. Dichloro and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for oxidative desulfurization of dibenzothiophene derivatives under extractive conditions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kumar N, Banerjee T. Molecular Mechanism and Solubility Performance Evaluation for Separation of Benzothiophene and Model Diesel Compounds through Deep Eutectic Solvents as Extractants. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikhil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Celebi AT, Dawass N, Moultos OA, Vlugt TJH. How sensitive are physical properties of choline chloride-urea mixtures to composition changes: Molecular dynamics simulations and Kirkwood-Buff theory. J Chem Phys 2021; 154:184502. [PMID: 34241035 DOI: 10.1063/5.0049064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Deep eutectic solvents (DESs) have emerged as a cheaper and greener alternative to conventional organic solvents. Choline chloride (ChCl) mixed with urea at a molar ratio of 1:2 is one of the most common DESs for a wide range of applications such as electrochemistry, material science, and biochemistry. In this study, molecular dynamics simulations are performed to study the effect of urea content on the thermodynamic and transport properties of ChCl and urea mixtures. With increased mole fraction of urea, the number of hydrogen bonds (HBs) between cation-anion and ion-urea decreases, while the number of HBs between urea-urea increases. Radial distribution functions (RDFs) for ChCl-urea and ChCl-ChCl pairs shows a significant decrease as the mole fraction of urea increases. Using the computed RDFs, Kirkwood-Buff Integrals (KBIs) are computed. KBIs show that interactions of urea-urea become stronger, while interactions of urea-ChCl and ChCl-ChCl pairs become slightly weaker with increasing mole fraction of urea. All thermodynamic factors are found larger than one, indicating a non-ideal mixture. Our results also show that self- and collective diffusivities increase, while viscosities decrease with increasing urea content. This is mainly due to the weaker interactions between ions and urea, resulting in enhanced mobilities. Ionic conductivities exhibit a non-monotonic behavior. Up to a mole fraction of 0.5, the ionic conductivities increase with increasing urea content and then reach a plateau.
Collapse
Affiliation(s)
- Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Noura Dawass
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
8
|
Julião D, Gomes AC, Pillinger M, Lopes AD, Valença R, Ribeiro JC, Gonçalves IS, Balula SS. Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Majid MF, Mohd Zaid HF, Kait CF, Jumbri K, Yuan LC, Rajasuriyan S. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112870] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Liu H, Chen S, Li X, Zhao R, Sun Y. Preparation of [EMIM]DEP/2C3H4O4 DESs and its oxidative desulfurization performance. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1717532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Haoran Liu
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, China
| | - Siyu Chen
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, China
| | - Xiuping Li
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, China
| | - Rongxiang Zhao
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, China
| | - Yue Sun
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, China
| |
Collapse
|
11
|
Majid MF, Mohd Zaid HF, Kait CF, Ghani NA, Jumbri K. Mixtures of tetrabutylammonium chloride salt with different glycol structures: Thermal stability and functional groups characterizations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Sikarwar P, Gosu V, Subbaramaiah V. An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0082] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Environmental concerns have given a great deal of attention for the production of ultra-low-sulfur fuels. The conventional hydrodesulfurization (HDS) process has high operating cost and also encounters difficulty in removing sulfur compound with steric hindrance. Consequently, various research efforts have been made to overcome the limitation of conventional HDS process and exploring the alternative technologies for deep desulfurization. The alternative processes being explored for the production of ultra-low-sulfur content fuel are adsorptive desulfurization (ADS), biodesulfurization (BDS), oxidative desulfurization (ODS), and extractive desulfurization (EDS). The present article provided the comprehensive information on the basic principle, reaction mechanism, workability, advantages, and disadvantages of conventional and alternative technologies. This review article aims to provide valuable insight into the recent advances made in conventional HDS process and alternative techniques. For deep desulfurization of liquid fuels, integration of conventional HDS with an alternative technique is also proposed.
Collapse
|
13
|
Chandran D, Khalid M, Walvekar R, Mubarak NM, Dharaskar S, Wong WY, Gupta TCSM. Deep eutectic solvents for extraction-desulphurization: A review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.051] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Oxidative desulfurization of diesel fuel with caprolactam-based acidic deep eutectic solvents: Tailoring the reactivity of DESs by adjusting the composition. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63091-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Akopyan AV, Fedorov RA, Andreev BV, Tarakanova AV, Anisimov AV, Karakhanov EA. Oxidative Desulfurization of Hydrocarbon Feedstock. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427218040018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Faraone A, Wagle DV, Baker GA, Novak EC, Ohl M, Reuter D, Lunkenheimer P, Loidl A, Mamontov E. Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent. J Phys Chem B 2018; 122:1261-1267. [PMID: 29336157 DOI: 10.1021/acs.jpcb.7b11224] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The deep eutectic solvent glyceline formed by choline chloride and glycerol in 1:2 molar ratio is much less viscous compared to glycerol, which facilitates its use in many applications where high viscosity is undesirable. Despite the large difference in viscosity, we have found that the structural network of glyceline is completely defined by its glycerol constituent, which exhibits complex microscopic dynamic behavior, as expected from a highly correlated hydrogen-bonding network. Choline ions occupy interstitial voids in the glycerol network and show little structural or dynamic correlations with glycerol molecules. Despite the known higher long-range diffusivity of the smaller glycerol species in glyceline, in applications where localized dynamics is essential (e.g., in microporous media), the local transport and dynamic properties must be dominated by the relatively loosely bound choline ions.
Collapse
Affiliation(s)
- A Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg , Gaithersburg, Maryland 20899, United States
| | - D V Wagle
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - G A Baker
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - E C Novak
- Department of Materials Science and Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - M Ohl
- Jülich Center for Neutron Science, Forschungszentrum Jülich GmbH , Jülich 52425, Germany
| | - D Reuter
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg , Augsburg 86159, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg , Augsburg 86159, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg , Augsburg 86159, Germany
| | - E Mamontov
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
17
|
Superparamagnetic Mo-containing core-shell microspheres for catalytic oxidative desulfurization of fuel. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Atilhan M, Costa LT, Aparicio S. On the behaviour of aqueous solutions of deep eutectic solvents at lipid biomembranes. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Shi Y, Liu G, Zhang X. Adsorptive Removal of Dibenzothiophene and Dibenzothiophene Sulfone over Mesoporous Materials. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yawei Shi
- Key Laboratory for Green
Chemical Technology of Ministry of Education, School of Chemical Engineering
and Technology, Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Guozhu Liu
- Key Laboratory for Green
Chemical Technology of Ministry of Education, School of Chemical Engineering
and Technology, Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green
Chemical Technology of Ministry of Education, School of Chemical Engineering
and Technology, Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Mao CF, Zhao RX, Li XP. Propionic acid-based deep eutectic solvents: synthesis and ultra-deep oxidative desulfurization activity. RSC Adv 2017. [DOI: 10.1039/c7ra05687g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Propionic acid-based deep eutectic solvents (C3H6O2/X ZnCl2, X from 0.1 to 0.6) were synthesized by stirring a mixture of propionic acid and zinc chloride at 100 °C.
Collapse
Affiliation(s)
- Chun-feng Mao
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Rong-xiang Zhao
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| | - Xiu-ping Li
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun 113001
- China
| |
Collapse
|
21
|
Jiang W, Dong L, Liu W, Guo T, Li H, Zhang M, Zhu W, Li H. Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents. RSC Adv 2017. [DOI: 10.1039/c7ra10125b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deep eutectic solvents (DESs) are ‘green’ sustainable solvents with wide applications such as extractive desulfurization of fuel; however, their low extraction efficiency is a major limitation to such applications.
Collapse
Affiliation(s)
- Wei Jiang
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Lei Dong
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wei Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Tao Guo
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Hongping Li
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Ming Zhang
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Huaming Li
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|