1
|
Ahmad MG, Chanda K. Ionic liquid coordinated metal-catalyzed organic transformations: A comprehensive review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Zaki EG, Mohmed D, Hussein MF, El-Zayat MM, Soliman FS, Aman D. Assessment of polyethylene/Zn-ionic as a diesel fuel sulfur adsorbent: gamma radiation effect and response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52993-53009. [PMID: 34023992 DOI: 10.1007/s11356-021-14501-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Irradiated waste high-density polyethylene@Zn/ionic liquid novel composite well-fabricated via coacervation method was irradiated by gamma-irradiation and studied the effect of that radiation on the desulfurization process. The prepared composites were characterized by various analytical techniques as follows: X-ray diffraction (XRD), Fourier-Transform infrared (FT-IR), X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM), High Resolution Transmission Electron Microscopy (HRTEM), N2-adsorption-desorption isotherm, and thermal gravimetric analysis (TG/DTA). The adsorptive desulfurization process of benzothiophene (BT) and dibenzothiophene (DBT) which are harmful compounds in diesel model fuel was investigating using the irradiated and unirradiated composite. The results illustrated that the unirradiated and irradiated composites exhibit an adequate adsorption capacity reached (50-75 mg S/g) and (60-85 mg S/g) for BT and DBT, respectively. The adsorption process over the prepared adsorbents follows the pseudo-second-order kinetic models. The irradiated composite exhibited more adsorption capacity than the unirradiated one due to the radiation generated more surface area and created proton-bond donor sites in the composite surface, which increases the interaction between the surface and sulfur species. The adsorption capacity and adsorption percentage for irradiated and unirradiated composites towards (SCCs) were studied using response surface methodology based on the central composite design (CCD). The thermodynamic factors (∆H°, ∆G°, and ∆S°) reveal that these processes are endothermic adsorption processes. The irradiated PEt @Zn/IL was re-used without significant loss of adsorption activity. This novel irradiated PEt @Zn/IL is the first time used as an adsorbent with an advantage that includes its excellent adsorption capacity, which ensures the product will be efficient in a real process such as the petrochemical industry.
Collapse
Affiliation(s)
- Elsayed Gamal Zaki
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| | - Dina Mohmed
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Modather Farouk Hussein
- Chemistry department, Faculty of Science, Al-Azhar University, Assuit, Egypt
- Chemistry department, college of Science, Jouf University, Sakakah, Kingdom of Saudi Arabia
| | - Mai Mahmoud El-Zayat
- National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Fathi Samir Soliman
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
- EPRI-Nanotechnology Center, Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt
| | - Delvin Aman
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
- EPRI-Nanotechnology Center, Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt.
| |
Collapse
|
5
|
Patel D, Modi CK, Jha PK, Srivastava H, Kane SR. ZnO Nanoparticles Embedded on a Reduced Graphene Oxide Nanosheet (ZnO−NPs@r‐GO) as a Proficient Heterogeneous Catalyst for a One‐Pot A
3
‐Coupling Reaction. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dikin Patel
- Applied Chemistry Department, Faculty of Technology & Engineering The Maharaja Sayajirao University of Baroda Vadodara 390 001, Gujarat India
| | - Chetan K. Modi
- Applied Chemistry Department, Faculty of Technology & Engineering The Maharaja Sayajirao University of Baroda Vadodara 390 001, Gujarat India
| | - Prafulla K. Jha
- Department of Physics, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara, Gujarat 390 002 India
| | - Himanshu Srivastava
- Synchrotrons Utilisation Section Raja Ramanna Centre for Advanced Technology Indore 452013 India
| | - Sanjeev R. Kane
- Synchrotrons Utilisation Section Raja Ramanna Centre for Advanced Technology Indore 452013 India
| |
Collapse
|
6
|
One-pot, multi-component synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives containing ferrocenyl. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Wang G, Yuan S, Wu Z, Liu W, Zhan H, Liang Y, Chen X, Ma B, Bi S. Ultra‐low‐loading palladium nanoparticles stabilized on nanocrystalline Polyaniline (Pd@PANI): A efficient, green, and recyclable catalyst for the reduction of nitroarenes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gang Wang
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Shuo Yuan
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Zhiqiang Wu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Wanyi Liu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Haijuan Zhan
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Yanping Liang
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Xiaoyan Chen
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Baojun Ma
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| | - Shuxian Bi
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia University Yinchuan 750021 P. R. China
| |
Collapse
|
8
|
Abaeezadeh S, Elhamifar D, Norouzi M, Shaker M. Magnetic nanoporous MCM‐41 supported ionic liquid/palladium complex: An efficient nanocatalyst with high recoverability. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Dawood Elhamifar
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | - Meysam Norouzi
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | - Masoumeh Shaker
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| |
Collapse
|
9
|
Patil RV, Chavan JU, Dalal DS, Shinde VS, Beldar AG. Biginelli Reaction: Polymer Supported Catalytic Approaches. ACS COMBINATORIAL SCIENCE 2019; 21:105-148. [PMID: 30645098 DOI: 10.1021/acscombsci.8b00120] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Biginelli product, dihydropyrimidinone (DHPM) core, and its derivatives are of immense biological importance. There are several methods reported as modifications to the original Biginelli reaction. Among them, many involve the use of different catalysts. Also, among the advancements that have been made to the Biginelli reaction, improvements in product yields, less hazardous reaction conditions, and simplified isolation of products from the reaction predominate. Recently, solid-phase synthetic protocols have attracted the research community for improved yields, simplified product purification, recyclability of the solid support, which forms a special economic approach for Biginelli reaction. The present Review highlights the role of polymer-supported catalysts in Biginelli reaction, which may involve organic, inorganic, or hybrid polymers as support for catalysts. A few of the schemes involve magnetically recoverable catalysts where work up provides green approach relative to traditional methods. Some research groups used polymer-catalyst nanocomposites and polymer-supported ionic liquids as catalyst. Solvent-free, an ultrasound or microwave-assisted Biginelli reactions with polymer-supported catalysts are also reported.
Collapse
Affiliation(s)
- Rajendra V. Patil
- Department of Chemistry, P.S.G.V.P.M’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, Nandurbar-425409, India
| | - Jagdish U. Chavan
- Department of Chemistry, P.S.G.V.P.M’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, Nandurbar-425409, India
| | - Dipak S. Dalal
- School of Chemical Sciences, North Maharashtra University, Jalgaon-425001, India
| | - Vaishali S. Shinde
- Garware Research Centre, Department of Chemistry, University of Pune, Pune-411 007, India
| | - Anil G. Beldar
- Department of Chemistry, P.S.G.V.P.M’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, Nandurbar-425409, India
| |
Collapse
|
10
|
Norouzi M, Elhamifar D. Phenylene and Isatin Based Bifunctional Mesoporous Organosilica Supported Schiff-Base/Manganese Complex: An Efficient and Recoverable Nanocatalyst. Catal Letters 2019. [DOI: 10.1007/s10562-019-02653-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Norouzi M, Elhamifar D, Mirbagheri R, Ramazani Z. Synthesis, characterization and catalytic application of a novel ethyl and boron sulfonic acid based bifunctional periodic mesoporous organosilica. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Elhamifar D, Ramazani Z, Norouzi M, Mirbagheri R. Magnetic iron oxide/phenylsulfonic acid: A novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. J Colloid Interface Sci 2017; 511:392-401. [PMID: 29035802 DOI: 10.1016/j.jcis.2017.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
A novel magnetic iron oxide supported phenylsulfonic acid (Fe3O4@Ph-SO3H) with core-shell structure is prepared, characterized and applied as efficient nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans. The Fe3O4@Ph-SO3H was prepared via modification of magnetic iron oxide cores with 1,4-bis(triethoxysilyl)benzene (BTEB) followed by sulfonation of aromatic rings. The Fe3O4@Ph-SO3H was characterized using FTIR, TGA, PXRD, SEM, TEM, VSM and EDX techniques. This was effectively applied for synthesis of tetrahydrobenzo[b]pyrans in water as green solvent at room temperature under ultrasonic conditions. The products were obtained in high to excellent yields at short times. The recoverability, reusability and durability of this nanocatalyst were studied under applied reaction conditions.
Collapse
Affiliation(s)
- Dawood Elhamifar
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Zahra Ramazani
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Meysam Norouzi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Reza Mirbagheri
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
13
|
Qin H, Jiang X, Huang H, Liu W, Li J, Xiao Y, Mao L, Fu Z, Yu N, Yin D. Ionic liquid-assisted catalytic oxidation of anethole by copper- and iron-based metal-organic frameworks. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Dekamin MG, Mehdipoor F, Yaghoubi A. 1,3,5-Tris(2-hydroxyethyl)isocyanurate functionalized graphene oxide: a novel and efficient nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. NEW J CHEM 2017. [DOI: 10.1039/c7nj00632b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation and characterization of a novel 1,3,5-tris(2-hydroxyethyl)isocyanurate functionalized graphene oxide (GO–THEIC) nanomaterial and its catalytic application for the Biginelli reaction are described.
Collapse
Affiliation(s)
- Mohammad G. Dekamin
- Pharmaceutical and Biologically-Active Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| | - Fatemeh Mehdipoor
- Pharmaceutical and Biologically-Active Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| | - Amene Yaghoubi
- Pharmaceutical and Biologically-Active Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|