1
|
Chałupka J, Marszałł MP, Sikora A. Enzymatic Kinetic Resolution of Racemic 1-(Isopropylamine)-3-phenoxy-2-propanol: A Building Block for β-Blockers. Int J Mol Sci 2024; 25:10730. [PMID: 39409060 PMCID: PMC11476467 DOI: 10.3390/ijms251910730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to optimize the kinetic resolution of building blocks for the synthesis of β-blockers using Candida rugosa lipases, which could be potentially used to synthesize enantiomerically pure β-blockers further. Reaction mixtures were incubated in a thermostated shaker. Qualitative and quantitative analyses of the reaction mixtures were performed using chiral stationary phases and the UPLC-IT-TOF system. Of the 24 catalytic systems prepared, a system containing lipase from Candida rugosa MY, [EMIM][BF4] and toluene as a two-phase reaction medium and isopropenyl acetate as an acetylating agent was optimal. This resulted in a product with high enantiomeric purity produced via biotransformation, whose enantioselectivity was E = 67.5. Using lipases from Candida rugosa enables the enantioselective biotransformation of the β-blockers building block. The biocatalyst used, the reaction environment, and the acetylating agent significantly influence the efficiency of performer kinetic resolutions. The studies made it possible to select an optimum system, a prerequisite for obtaining a product of high enantiomeric purity. As a result of the performed biotransformation, the (S)-enantiomer of the β-blocker derivative was obtained, which can be used to further synthesize enantiomerically pure β-blockers.
Collapse
Affiliation(s)
- Joanna Chałupka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Adam Sikora
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
The Application of Two-Phase Catalytic System in Enantioselective Separation of Racemic (R,S)-1-Phenylethanol. Catalysts 2023. [DOI: 10.3390/catal13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kinetic resolution is one of the methods which allows obtaining enantiomerically pure compounds. In the study presented herein, enantioselective biotransformations of (R,S)-1-phenylethanol were performed with the use of various catalytic systems containing ionic liquids and n-heptane or toluene as a reaction medium, vinyl acetate or isopropenyl acetate as an acetylating agent, and lipases from Burkholderia cepacia or Candida rugosa. The conducted studies proved that the use of Burkholderia cepacia lipase, vinyl acetate, and n-heptane with [EMIM][BF4] allows obtaining enantiomerically pure 1-phenylethyl acetate, with the enantiomeric excess of products eep = 98.9%, conversion c = 40.1%, and high value of enantioselectivity E > 200. Additionally, the use of ionic liquids allowed us to reuse enzyme in 5 reaction cycles, ensuring the high operational stability of the protein.
Collapse
|
4
|
Dulęba J, Siódmiak T, Marszałł MP. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized Amano PS from Burkholderia cepacia lipase (APS-BCL). Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Dias MDRG, da Silva GPC, de Pauloveloso A, Krieger N, Pilissão C. Biocatalytic asymmetric synthesis of secondary allylic alcohols using Burkholderia cepacia lipase immobilized on multiwalled carbon nanotubes. Chirality 2022; 34:1008-1018. [PMID: 35506895 DOI: 10.1002/chir.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
The lipase from Burkholderia cepacia (BCL) was immobilized through physical adsorption on pristine and functionalized multiwalled carbon nanotubes (MWCNTs) with carboxyl or amine groups and used in the stereoselective acylation of (R,S)-1-octen-3-ol (1) and (R,S)-(E)-4-phenyl-3-buten-2-ol (4) with vinyl acetate. All immobilized preparations produced better results than free BCL. For (R,S)-4, 50% conversion and E > 200 were obtained in n-hexane or in solvent-free medium. For (R,S)-1, in solvent-free medium, the conversion was 38% with a slight increase in the E-value (E = 10).
Collapse
Affiliation(s)
| | | | | | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | - Cristiane Pilissão
- Departamento de Química e Biologia, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Fermented solids that contain lipases produced by Rhizopus microsporus have an S-enantiopreference in the resolution of secondary alcohols. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Wang W, Li L, Wang X, Qiu T, Yang J, Ye C. Reaction kinetic studies on the immobilized-lipase catalyzed enzymatic resolution of 1-phenylethanol transesterification with ethyl butyrate. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1855150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Weican Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Ling Li
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Xiaoda Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Ting Qiu
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Jianhao Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Changshen Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
8
|
Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity. Appl Biochem Biotechnol 2020; 193:430-445. [PMID: 33025565 DOI: 10.1007/s12010-020-03443-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
This study defines the lipase immobilization protocol and enzymatic kinetic resolution of 1-phenyl ethanol with the use of immobilized lipases (LI) as a biocatalyst. Commercially available lipase Candida antarctica B (Cal-B) was immobilized onto graphene oxide (GO), iron oxide (Fe3O4) nanoparticles, and graphene oxide/iron oxide (GO/Fe3O4) nanocomposites. Characterization of pure and enzyme-loaded supports was carried out by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The influences of pH, temperature, immobilization time, crosslinker concentration, glutaraldehyde (GLA), epichlorohydrin (EPH), and surfactant concentrations (Tween 80 and Triton X-100) on the catalytic activity were evaluated for these three immobilized biocatalysts. The highest immobilized enzyme activities were 15.03 U/mg, 14.72 U/mg, and 13.56 U/mg for GO-GLA-CalB, Fe3O4-GLA-CalB, and GO/Fe3O4-GLA-CalB, respectively. Moreover, enantioselectivity and reusability of these immobilized lipases were compared for the kinetic resolution of 1-phenyl ethanol, using toluene as organic solvent and vinyl acetate as acyl donor. The highest values of enantiomeric excess (ees = 99%), enantioselectivity (E = 507.74), and conversion (c = 50.73%) were obtained by using lipase immobilized onto graphene oxide (GO-GLA-CalB). It was obtained that this enzymatic process may be repeated five times without important loss of enantioselectivity.
Collapse
|
9
|
Dulęba J, Siódmiak T, Marszałł MP. Amano Lipase PS from Burkholderia cepacia- Evaluation of the Effect of Substrates and Reaction Media on the Catalytic Activity. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200408092305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
:
Lipases in the native or immobilized form have commonly been used as catalysts
in the chemical and pharmaceutical industry. One of the widely available enzyme
catalysts on the market is lipase from Burkholderia cepacia (BCLs), previously called
Pseudomonas cepacia (PCLs). This enzyme is applied, among others, in the stereoselective
acylation of molecules to achieve chiral pure enantiomers of drugs or their building
blocks. In this study, Amano lipase PS (APS-BCL), which is a commercial lipase from
Burkholderia cepacia (BC) was tested. The lipolytic activity of APS-BCL by hydrolysis
of vegetable oils and enantioselective activity of APS-BCL by the kinetic resolution of
(R,S)-1-phenylethanol with using isopropenyl acetate as an acyl donor were evaluated. An
effect of reaction media with different logP values (t-butyl methyl ether, dichloromethane,
diisopropyl ether, toluene, cyclohexane, n-hexane, isooctane and n-heptane) on the enantioselective activity of
lipase was also studied. The high value of the enantiomeric ratio (E =308.5) with the utilization of isopropenyl
acetate was achieved. Whereas, the best reaction medium turned out to be diisopropyl ether, C =47.9%, eep
=98%, ees =90%, after 24 h of incubation. Moreover, the influence of ω6/ω9 polyunsaturated fatty acids (PUFAs)
ratio in commercial (peanut, camelina, rape, pumpkin seed, walnut, sesame, avocado, rice, corn, black
cumin, hemp, safflower, grape seed) oils was investigated for the lipase activity. For the first time, the cut-off
limit of ω6/ω9 ratio was proposed. The ratio equal to or higher than 2.3 allows achieving higher lipolytic activity.
Collapse
Affiliation(s)
- Jacek Dulęba
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Tomasz Siódmiak
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
10
|
Kaabel S, Friščić T, Auclair K. Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. Chembiochem 2019; 21:742-758. [PMID: 31651073 DOI: 10.1002/cbic.201900567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra Kaabel
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
11
|
Enantioselective Resolution of (±)-1-Phenylethyl Acetate by Using the Whole Cells of Deep-sea Bacterium Bacillus sp. DL-2. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Almeida JM, Martini VP, Iulek J, Alnoch RC, Moure VR, Müller-Santos M, Souza EM, Mitchell DA, Krieger N. Biochemical characterization and application of a new lipase and its cognate foldase obtained from a metagenomic library derived from fat-contaminated soil. Int J Biol Macromol 2019; 137:442-454. [DOI: 10.1016/j.ijbiomac.2019.06.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
|
13
|
Dong L, Xu Y, Zhang Y, Sun A, Hu Y. Enantioselective resolution of (±)-1-phenylethyl acetate by extracellular proteases from deep-sea bacterium Bacillus sp. DL-2. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1616697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yongkai Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Aijun Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yunfeng Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China
| |
Collapse
|
14
|
One pot kinetic resolution and product separation with corn germ oil and supercritical carbon dioxide. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Li K, Wang J, He Y, Abdulrazaq MA, Yan Y. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity. J Biotechnol 2018; 281:87-98. [DOI: 10.1016/j.jbiotec.2018.06.344] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
|
16
|
Su A, Tyrikos-Ergas T, Shirke AN, Zou Y, Dooley AL, Pavlidis IV, Gross RA. Revealing Cutinases’ Capabilities as Enantioselective Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- An Su
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Theodore Tyrikos-Ergas
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Abhijit N. Shirke
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yi Zou
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Abigail L. Dooley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
17
|
Todea A, Borza P, Cimporescu A, Paul C, Peter F. Continuous kinetic resolution of aliphatic and aromatic secondary alcohols by sol-gel entrapped lipases in packed bed bioreactors. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Moisă ME, Poppe L, Gal CA, Bencze LC, Irimie FD, Paizs C, Peter F, Toşa MI. Click reaction-aided enzymatic kinetic resolution of secondary alcohols. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00091c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, efficient lipase-mediated kinetic resolution–click-reaction-based procedure is presented for the production of both enantiomers of various 1-(hetero)aromatic ethanols.
Collapse
Affiliation(s)
- Mădălina Elena Moisă
- Biocatalysis and Biotransformation Research Center
- Babeş-Bolyai University of Cluj-Napoca
- RO-400028 Cluj-Napoca
- Romania
| | - László Poppe
- Biocatalysis and Biotransformation Research Center
- Babeş-Bolyai University of Cluj-Napoca
- RO-400028 Cluj-Napoca
- Romania
- Department of Organic Chemistry and Technology
| | - Cristian Andrei Gal
- Biocatalysis and Biotransformation Research Center
- Babeş-Bolyai University of Cluj-Napoca
- RO-400028 Cluj-Napoca
- Romania
| | - László Csaba Bencze
- Biocatalysis and Biotransformation Research Center
- Babeş-Bolyai University of Cluj-Napoca
- RO-400028 Cluj-Napoca
- Romania
| | - Florin Dan Irimie
- Biocatalysis and Biotransformation Research Center
- Babeş-Bolyai University of Cluj-Napoca
- RO-400028 Cluj-Napoca
- Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center
- Babeş-Bolyai University of Cluj-Napoca
- RO-400028 Cluj-Napoca
- Romania
| | - Francisc Peter
- Biocatalysis Group
- University Politehnica of Timişoara
- 300001 Timisoara
- Romania
| | - Monica Ioana Toşa
- Biocatalysis and Biotransformation Research Center
- Babeş-Bolyai University of Cluj-Napoca
- RO-400028 Cluj-Napoca
- Romania
| |
Collapse
|
19
|
Varga Z, Kmecz I, Szécsényi Á, Székely E. Neat lipase-catalysed kinetic resolution of racemic 1-phenylethanol and a straightforward modelling of the reaction. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1360292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zsófia Varga
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ildikó Kmecz
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ágnes Szécsényi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Székely
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
20
|
Zheng M, Xiang X, Wang S, Shi J, Deng Q, Huang F, Cong R. Lipase immobilized in ordered mesoporous silica: A powerful biocatalyst for ultrafast kinetic resolution of racemic secondary alcohols. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Shang YP, Chen Q, Kong XD, Zhang YJ, Xu JH, Yu HL. Efficient Synthesis of (R)-2-Chloro-1-(2,4-dichlorophenyl)ethanol with a Ketoreductase fromScheffersomyces stipitisCBS 6045. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue-Peng Shang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Yu-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
22
|
Rocha Â, Teixeira R, Lourenço NMT, Afonso CAM. Enzymatic Kinetic Resolution of Secondary Alcohols Using an Ionic Anhydride Generated In Situ. CHEMSUSCHEM 2017; 10:296-302. [PMID: 27709801 DOI: 10.1002/cssc.201600579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/18/2016] [Indexed: 06/06/2023]
Abstract
We developed a method for the resolution of secondary alcohols using an ionic anhydride acylating agent prepared directly in the reaction medium containing the biocatalyst Candida antarctica lipase B (CALB). NMR studies showed that mixing all components at the same time does not interfere with the coupling reaction or the enzymatic activity. After optimization of the reaction conditions, the method allowed the resolution of a number of substrates in very high conversions (46-48 %) and enantiomeric ratios (E>170) along with an easy recovery of both enantiomers without the need for preparative chromatographic separation. Additionally, both the starting ionic acid and the biocatalyst could be recovered and reused up to nine cycles without significant loss of enantioselectivity.
Collapse
Affiliation(s)
- Ângelo Rocha
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Raquel Teixeira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Nuno M T Lourenço
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-009, Lisboa, Portugal
| |
Collapse
|
23
|
Rios NS, Pinheiro MP, dos Santos JCS, de S. Fonseca T, Lima LD, de Mattos MC, Freire DM, da Silva IJ, Rodríguez-Aguado E, Gonçalves LR. Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of ( R , S )-Phenylethyl acetate. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Facile modulation of enantioselectivity of thermophilic Geobacillus zalihae lipase by regulating hydrophobicity of its Q114 oxyanion. Enzyme Microb Technol 2016; 93-94:174-181. [DOI: 10.1016/j.enzmictec.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 01/04/2023]
|
25
|
Sandig B, Buchmeiser MR. Highly Productive and Enantioselective Enzyme Catalysis under Continuous Supported Liquid-Liquid Conditions Using a Hybrid Monolithic Bioreactor. CHEMSUSCHEM 2016; 9:2917-2921. [PMID: 27650312 DOI: 10.1002/cssc.201600994] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Enzyme-containing ionic liquids (ILs) were immobilized in cellulose-2.5-acetate microbeads particles embedded in a porous monolithic polyurethane matrix. This bioreactor was used under continuous liquid-liquid conditions by dissolving the substrates in a nonpolar organic phase immiscible with the ILs, thereby creating a biphasic system. Lipases (candida antarctica lipase B, CALB, candida rugosa lipase, CRL) were used to catalyze the enantioselective transesterification of racemic (R,S)-1-phenylethanol with vinyl butyrate and vinyl acetate, the esterification of (+/-)-2-isopropyl-5-methylcyclohexanol with propionic anhydride and the amidation of (R,S)-1-phenylethylamine with ethyl methoxyacetate. With this unique setup, very high productivities, that is, turnover numbers (TONs) up to 5.1×106 and space-time yields (STYs) up to 28 g product L-1 h-1 , exceeding the corresponding values for batch-type reactions by a factor of 3100 and 40, respectively, were achieved while maintaining or even enhancing enantioselectivity compared to batch reactions via kinetic resolution. To our best knowledge, this is the first continuously operated bioreactor using supported liquid-liquid conditions that shows these features in the synthesis of chiral esters and amides.
Collapse
Affiliation(s)
- Bernhard Sandig
- Institut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Michael R Buchmeiser
- Institut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| |
Collapse
|
26
|
Yan HD, Wang Z, Qian JQ. Efficient kinetic resolution of (RS
)-1-phenylethanol by a mycelium-bound lipase from a wild-type Aspergillus oryzae
strain. Biotechnol Appl Biochem 2016; 64:251-258. [DOI: 10.1002/bab.1484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hong-De Yan
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou People's Republic of China
| | - Zhao Wang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou People's Republic of China
| | - Jun-Qing Qian
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou People's Republic of China
| |
Collapse
|
27
|
Tuning of hydrophilic ionic liquids concentration: A way to prevent enzyme instability. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Enantioselective Resolution of (±)-1-Phenylethanol and (±)-1-Phenylethyl Acetate by a Novel Esterase from Bacillus sp. SCSIO 15121. Appl Biochem Biotechnol 2015; 178:558-75. [DOI: 10.1007/s12010-015-1894-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|
29
|
Cui C, Xie R, Tao Y, Zeng Q, Chen B. Improving performance ofYarrowia lipolyticalipase lip2-catalyzed kinetic resolution of (R, S)-1-phenylethanol by solvent engineering. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1018190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Alnoch RC, Martini VP, Glogauer A, Costa ACDS, Piovan L, Muller-Santos M, de Souza EM, de Oliveira Pedrosa F, Mitchell DA, Krieger N. Immobilization and characterization of a new regioselective and enantioselective lipase obtained from a metagenomic library. PLoS One 2015; 10:e0114945. [PMID: 25706996 PMCID: PMC4338019 DOI: 10.1371/journal.pone.0114945] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
In previous work, a new lipase and its cognate foldase were identified and isolated from a metagenomic library constructed from soil samples contaminated with fat. This new lipase, called LipG9, is a true lipase that shows specific activities that are comparable to those of well-known industrially-used lipases with high activity against long-chain triglycerides. In the present work, LipG9 was co-expressed and co-immobilized with its foldase, on an inert hydrophobic support (Accurel MP1000). We studied the performance of this immobilized LipG9 (Im-LipG9) in organic media, in order to evaluate its potential for use in biocatalysis. Im-LipG9 showed good stability, maintaining a residual activity of more than 70% at 50 °C after incubation in n-heptane (log P 4.0) for 8 h. It was also stable in polar organic solvents such as ethanol (log P -0.23) and acetone (log P -0.31), maintaining more than 80% of its original activity after 8 h incubation at 30 °C. The synthesis of ethyl esters was tested with fatty acids of different chain lengths in n-heptane at 30 °C. The best conversions (90% in 3 h) were obtained for medium and long chain saturated fatty acids (C8, C14 and C16), with the maximum specific activity, 29 U per gram of immobilized preparation, being obtained with palmitic acid (C16). Im-LipG9 was sn-1,3-specific. In the transesterification of the alcohol (R,S)-1-phenylethanol with vinyl acetate and the hydrolysis of the analogous ester, (R,S)-1-phenylethyl acetate, Im-LipG9 showed excellent enantioselectivity for the R-isomer of both substrates (E> 200), giving an enantiomeric excess (ee) of higher than 95% for the products at 49% conversion. The results obtained in this work provide the basis for the development of applications of LipG9 in biocatalysis.
Collapse
Affiliation(s)
- Robson Carlos Alnoch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| | | | - Arnaldo Glogauer
- Agência Tecpar de Inovação, Instituto de Tecnologia do Paraná—Tecpar, Curitiba 81350–010, Paraná, Brazil
| | - Allen Carolina dos Santos Costa
- Departamento de Química, Universidade Federal do Paraná, Cx. P. 19081 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| | - Leandro Piovan
- Departamento de Química, Universidade Federal do Paraná, Cx. P. 19081 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| | - Marcelo Muller-Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx. P. 19081 Centro Politécnico, Curitiba 81531–980, Paraná, Brazil
| |
Collapse
|
31
|
Shang CY, Li WX, Zhang RF. Immobilized Candida antarctica lipase B on ZnO nanowires/macroporous silica composites for catalyzing chiral resolution of (R,S)-2-octanol. Enzyme Microb Technol 2014; 61-62:28-34. [DOI: 10.1016/j.enzmictec.2014.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 01/20/2023]
|
32
|
Li X, Xu L, Wang G, Zhang H, Yan Y. Conformation studies on Burkholderia cenocepacia lipase via resolution of racemic 1-phenylethanol in non-aqueous medium and its process optimization. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Immobilization and Biochemical Properties of the Enantioselective Recombinant NStcI Esterase of Aspergillus nidulans. Enzyme Res 2013; 2013:928913. [PMID: 23781330 PMCID: PMC3678419 DOI: 10.1155/2013/928913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/23/2022] Open
Abstract
The recombinant NStcI A. nidulans esterase was adsorbed on Accurel MP1000, where protein yield and immobilization efficiency were 42.48% and 81.94%, respectively. Storage stability test at 4°C and RT showed 100% of residual activity after 40 days at both temperatures. The biocatalyst retains more than 70% of its initial activity after 3 cycles of repeated use. Biochemical properties of this new biocatalyst were obtained. Maximum activity was achieved at pH 11 and 30°C, while the best stability was observed with the pH between 9 and 11 at 40°C. NStcI thermostability was increased after immobilization, as it retained 47.5% of its initial activity after 1 h at 60°C, while the free enzyme under the same conditions displayed no activity. NStcI preserved 70% of its initial activity in 100% hexane after 72 h. Enzymatic kinetic resolution of (R,S)-1-phenylethanol was chosen as model reaction, using vinyl acetate as acyl donor. After optimization of reaction parameters, the highest possible conversion (42%) was reached at 37°C, aw of 0.07, and 120 h of bioconversion in hexane with an enantiomeric excess of 71.7%. NStcI has selectivity for (R)-enantiomer. The obtained E value (31.3) is in the range considered useful to resolve enantiomeric mixtures.
Collapse
|
34
|
Bustos-Jaimes I, García-Torres Y, Santillán-Uribe HC, Montiel C. Immobilization and enantioselectivity of Bacillus pumilus lipase in ionic liquids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Fatiha B, Sameh B, Youcef S, Zeineddine D, Nacer R. COMPARISON OF ARTIFICIAL NEURAL NETWORK (ANN) AND RESPONSE SURFACE METHODOLOGY (RSM) IN OPTIMIZATION OF THE IMMOBILIZATION CONDITIONS FOR LIPASE FROMCandida rugosaON AMBERJET® 4200-Cl. Prep Biochem Biotechnol 2013; 43:33-47. [DOI: 10.1080/10826068.2012.693899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Mangan D, Miskelly I, Moody TS. A Three-Enzyme System Involving an Ene-Reductase for Generating Valuable Chiral Building Blocks. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201101006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
A novel lipase enzyme panel exhibiting superior activity and selectivity over lipase B from Candida antarctica for the kinetic resolution of secondary alcohols. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Clouthier CM, Pelletier JN. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 2012; 41:1585-605. [DOI: 10.1039/c2cs15286j] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Merabet-Khelassi M, Bouzemi N, Fiaud JC, Riant O, Aribi-Zouioueche L. Effet de la quantité de lipase sur la sélectivité du dédoublement cinétique par acylation enzymatique des arylalkylcarbinols. CR CHIM 2011. [DOI: 10.1016/j.crci.2011.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Evaluation of factors influencing the enantioselective enzymatic esterification of lactic acid in ionic liquid. Bioprocess Biosyst Eng 2011; 35:625-35. [DOI: 10.1007/s00449-011-0645-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
42
|
Wu DX, Guan YX, Wang HQ, Yao SJ. 11α-Hydroxylation of 16α,17-epoxyprogesterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. BIORESOURCE TECHNOLOGY 2011; 102:9368-9373. [PMID: 21855322 DOI: 10.1016/j.biortech.2011.07.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 05/31/2023]
Abstract
11α-Hydroxylation of 16α,17-epoxyprogesterone (EP) by Rhizopus nigricans is an essential step in the synthesis of many steroidal drugs, while low conversion of the biohydroxylation is a tough problem to be solved urgently in industry. Two ionic liquids (ILs) of [BMIm][PF(6)] and [BMIm][NTf(2)] were used in the biotransformation of EP by R. nigricans. The results indicated that the conversion carried out in [BMIm][PF(6)]-aqueous biphasic system was greatly increased to above 90% at 18 g/L feeding concentration. A simplified mechanism was proposed to explain the improvement of the bioconversion in a biphasic ionic liquid aqueous system. Besides, successive three batches of bioconversion were carried out in the biphasic system with a total conversion of 87% at phase ratio 10 and 75% at phase ratio 5, respectively. Since recycling of the [BMIm][PF(6)] is quite easy, there is a great potential for the application of ILs in fungi biotransformation to implement green production.
Collapse
Affiliation(s)
- Dong-Xiang Wu
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
43
|
Sontakke JB, Yadav GD. Kinetic Modeling and Statistical Optimization of Lipase Catalyzed Enantioselective Resolution of (R,S)-2-pentanol. Ind Eng Chem Res 2011. [DOI: 10.1021/ie2012032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jyoti B. Sontakke
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400 019 India
| |
Collapse
|
44
|
Kinetic Resolution of (R,S)-2-Butanol Using Enzymatic Synthesis of Esters. Appl Biochem Biotechnol 2011; 165:1129-40. [DOI: 10.1007/s12010-011-9330-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/27/2011] [Indexed: 11/25/2022]
|
45
|
Optimization of APE1547-catalyzed enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0253-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Gao B, Xu T, Lin J, Zhang L, Su E, Jiang Z, Wei D. Improving the catalytic activity of lipase LipK107 from Proteus sp. by site-directed mutagenesis in the lid domain based on computer simulation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Araujo AR, Saraiva MLM, Lima JL. Automatic flow methodology for kinetic and inhibition studies of reactions with poorly water-soluble substrates in ionic liquid systems. Anal Chim Acta 2011; 690:101-7. [DOI: 10.1016/j.aca.2011.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 11/16/2022]
|
48
|
Ou G, Yang J, He B, Yuan Y. Buffer-mediated activation of Candida antarctica lipase B dissolved in hydroxyl-functionalized ionic liquids. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Barbosa O, Ariza C, Ortiz C, Torres R. Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). N Biotechnol 2010; 27:844-50. [DOI: 10.1016/j.nbt.2010.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 11/30/2022]
|
50
|
Bitencourt TB, Nascimento MDG. The influence of organic solvent and ionic liquids on the selective formation of 2-(2-ethylhexyl)-3-phenyl-1,2-oxaziridine mediated by lipases. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|