1
|
Basmak S, Turhan I. Production of β-mannanase, inulinase, and oligosaccharides from coffee wastes and extracts. Int J Biol Macromol 2024; 261:129798. [PMID: 38286365 DOI: 10.1016/j.ijbiomac.2024.129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
This study aimed to produce enzymes (beta (β)-mannanase using a recombinant Aspergillus sojae AsT3 and inulinase using Aspergillus niger A42) and oligosaccharides (mannooligosaccharides (MOS), fructooligosaccharides (FOS)) using coffee waste, ground coffee, and coffee extract by solid-state fermentation (SSF). Plackett-Burman Design (PBD) was used to create a design for enzyme production with four different parameters (temperature, pH, solid-to-liquid ratio (SLR), and mix with coffee wastes and ground coffee). The highest β-mannanase and inulinase activities were 71.17 and 564.07 U/mg of protein respectively. Statistical analysis showed that the temperature was statistically significant for the production of both enzymes (P < 0.05). The produced enzymes were utilized in French Pressed coffee extracts to produce oligosaccharides. As a result of the enzymatic hydrolyzation, the highest mannobiose, mannotriose, mannotetraose, and total MOS levels were 109.66, 101.11, 391.02, and 600.64 ppm, respectively. For the FOS production, the maximal 1,1,1-kestopentaose was 38.34 ppm. Consequently, this study demonstrates that a recombinant Aspergillus sojae AsT3 β-mannanase and Aspergillus niger A42 inulinase produced from coffee wastes and ground coffee can be used in coffee extracts to increase the amount of oligosaccharides in coffee extracts.
Collapse
Affiliation(s)
- Selin Basmak
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
2
|
Germec M, Turhan I. Predictive modeling and sensitivity analysis to estimate the experimental data of inulinase fermentation by Aspergillus niger grown on sugar beet molasses-based medium optimized using Plackett-Burman Design. Biotechnol Appl Biochem 2022; 69:2399-2421. [PMID: 34847250 DOI: 10.1002/bab.2291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
The present work aimed to model Aspergillus niger inulinase fermentation performed in the medium using sigmoidal functions, validate the selected models using an independent set of the experimental values, and perform a sensitivity analysis of the selected models. Based on the results, the selected models were Stannard and Fitzhugh models for substrate consumption (R2 = 0.9976 and 0.9974, respectively), Huang model for inulinase production (R2 = 0.9967), Weibull model for invertase-type production (R2 = 0.9963), and modified logistic model for invertase-type activity/inulinase activity ratio (R2 = 0.9292) with high R2 values (>0.90). Kinetics predicted by particularly selected models mentioned above fit well with the experimental kinetic results. Besides, validation of the selected models with an independent set of the experimental data indicated that they gave satisfying results with high R2 values for consumption and production (R2 > 0.90). Sensitivity analysis of the selected models showed that the yielded R2 values (R2 ≥ 0.9775) were in good agreement with those obtained from the selected models. Consequently, A. niger inulinase fermentation was successfully modeled and the selected models were successfully validated with an independent set of the observed data. Besides, the sensitivity analysis also verified the reliability of the selected models. Those models can serve as universal equations to describe the A. niger inulinase fermentation.
Collapse
Affiliation(s)
- Mustafa Germec
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Germec M, Turhan I. Kinetic modeling and sensitivity analysis of inulinase production in large-scale stirred tank bioreactor with sugar beet molasses-based medium. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Yatmaz E. Growth control agent for filamentous fungi: FDM based 3D printed cubes for suspended Aspergillus sojae fermentation. Enzyme Microb Technol 2021; 150:109867. [PMID: 34489026 DOI: 10.1016/j.enzmictec.2021.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
The main problem for submerged fermentation of filamentous fungi is the nutrition limitation with high cell density or cell leakage by the uncontrollable hyphae, clusters, or pellets. There are several techniques such as microparticle, immobilization, pH shifting, substrate limitation etc. for controlling filamentous fungi growth on submerged fermentation. In this research, FDM (Fused Deposition Modelling) based 3D printed cubes is used for growth control agent of recombinant Aspergillus sojae for the first time. Lattice structure sizes, number of cubes and pH were chosen to be main factors of fermentation in order to study the combine effect of the factors on A. sojae fermentation. The results revealed that specific activity values are improved from 2045.96 U/mg (the highest control activity) to 3291.67 U/mg with lower pellet sizes and controllable growth. FDM based 3D printed cubes was successfully controlled the recombinant Aspergillus sojae fermentation and enhanced β-mannanase production. In addition, this research was also showed that FDM based 3D printed cubes also have the potential to be used as immobilization materials like SLS based 3D printed products in further research.
Collapse
Affiliation(s)
- Ercan Yatmaz
- Göynük Culinary Arts Vocational School, Akdeniz University, Kemer, Antalya, 07994, Turkey; Faculty of Engineering, Department of Food Engineering, Akdeniz University, Konyaaltı, Antalya, 07070, Turkey.
| |
Collapse
|
5
|
Gurler HN, Yilmazer C, Erkan SB, Ozcan A, Yatmaz E, Öziyci HR, Karhan M, Turhan I. Applicability of recombinant
Aspergillus sojae
crude mannanase enzyme in carrot juice production. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hilal Nur Gurler
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Cansu Yilmazer
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Selime Benemir Erkan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Hatice Reyhan Öziyci
- Department of Gastronomy and Culinary Arts College of Tourism Antalya Bilim University Antalya Turkey
| | - Mustafa Karhan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
6
|
Erkan SB, Ozcan A, Yilmazer C, Gurler HN, Karahalil E, Germec M, Yatmaz E, Kucukcetin A, Turhan I. The effects of mannanase activity on viscosity in different gums. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Selime Benemir Erkan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Cansu Yilmazer
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Hilal Nur Gurler
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ercan Karahalil
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Ahmet Kucukcetin
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
7
|
Yilmazer C, Gürler HN, Erkan SB, Ozcan A, Hosta Yavuz G, Germec M, Yatmaz E, Turhan I. Optimization of mannooligosaccharides production from different hydrocolloids via response surface methodology using a recombinant
Aspergillus sojae
β‐mannanase produced in the microparticle‐enhanced large‐scale stirred tank bioreactor. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cansu Yilmazer
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Hilal Nur Gürler
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Selime Benemir Erkan
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Gozde Hosta Yavuz
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
- Department of Nutrition and Dietetics Faculty of Health Sciences Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Department of Food Engineering Faculty of Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
8
|
Gürler HN, Erkan SB, Ozcan A, Yılmazer C, Karahalil E, Germec M, Yatmaz E, Ogel ZB, Turhan I. Scale‐up processing with different microparticle agent for β‐mannanase production in a large‐scale stirred tank bioreactor. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hilal Nur Gürler
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Selime Benemir Erkan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Cansu Yılmazer
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Karahalil
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Zumrut Begum Ogel
- Department of Food Engineering, Faculty of Engineering and Architecture Konya Food and Agriculture University Konya Turkey
| | - Irfan Turhan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
9
|
Enhancement of β-Mannanase Production by Bacillus subtilis ATCC11774 through Optimization of Medium Composition. Molecules 2020; 25:molecules25153516. [PMID: 32752106 PMCID: PMC7435724 DOI: 10.3390/molecules25153516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
Collapse
|
10
|
Erkan SB, Basmak S, Ozcan A, Yılmazer C, Gürler HN, Yavuz G, Germec M, Yatmaz E, Turhan I. Mannooligosaccharide production by β‐mannanase enzyme application from coffee extract. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Selin Basmak
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Cansu Yılmazer
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Hilal Nur Gürler
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Gözde Yavuz
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Department of Food Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Department of Food Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Department of Food Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
11
|
Yilmazer C, Germec M, Turhan I. Solid‐state fermentation for the production of a recombinant β‐mannanase from
Aspergillus fumigatus
expressed in
Aspergillus sojae
grown on renewable resources. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cansu Yilmazer
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
12
|
Enhancing β-mannanase production by controlling fungal morphology in the bioreactor with microparticle addition. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
β-Mannanase Production Using Coffee Industry Waste for Application in Soluble Coffee Processing. Biomolecules 2020; 10:biom10020227. [PMID: 32033042 PMCID: PMC7072339 DOI: 10.3390/biom10020227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Soluble coffee offers the combined benefits of high added value and practicality for its consumers. The hydrolysis of coffee polysaccharides by the biochemical route, using enzymes, is an eco-friendly and sustainable way to improve the quality of this product, while contributing to the implementation of industrial processes that have lower energy requirements and can reduce environmental impacts. This work describes the production of hydrolytic enzymes by solid-state fermentation (SSF), cultivating filamentous fungi on waste from the coffee industry, followed by their application in the hydrolysis of waste coffee polysaccharides from soluble coffee processing. Different substrate compositions were studied, an ideal microorganism was selected, and the fermentation conditions were optimized. Cultivations for enzymes production were carried out in flasks and in a packed-bed bioreactor. Higher enzyme yield was achieved in the bioreactor, due to better aeration of the substrate. The best β-mannanase production results were found for a substrate composed of a mixture of coffee waste and wheat bran (1:1 w/w), using Aspergillus niger F12. The enzymatic extract proved to be very stable for 24 h, at 50 °C, and was able to hydrolyze a considerable amount of the carbohydrates in the coffee. The addition of a commercial cellulase cocktail to the crude extract increased the hydrolysis yield by 56%. The production of β-mannanase by SSF and its application in the hydrolysis of coffee polysaccharides showed promise for improving soluble coffee processing, offering an attractive way to assist in closing the loops in the coffee industry and creating a circular economy.
Collapse
|
14
|
Karahalil E, Germeç M, Turhan I. β‐Mannanase production and kinetic modeling from carob extract by using recombinant
Aspergillus sojae. Biotechnol Prog 2019; 35:e2885. [DOI: 10.1002/btpr.2885] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Ercan Karahalil
- Department of Food EngineeringAkdeniz University Antalya Turkey
| | - Mustafa Germeç
- Department of Food EngineeringAkdeniz University Antalya Turkey
| | - Irfan Turhan
- Department of Food EngineeringAkdeniz University Antalya Turkey
| |
Collapse
|
15
|
Mannans: An overview of properties and application in food products. Int J Biol Macromol 2018; 119:79-95. [PMID: 30048723 DOI: 10.1016/j.ijbiomac.2018.07.130] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
This review aims to emphasize the occurrence and abundant presence of mannans in nature, their classification, structural differences and significance in food and feed industry. With rising demand from the consumers' end for novel natural foods, usage of galactomannan and glucomannan has also increased alternatively. Non toxicity of mannans permits their usage in the pharmaceutical, biomedical, cosmetics, and textile industries. In the food industry, mannans have various applications such as edible films/coating, gel formation, stiffeners, viscosity modifiers, stabilizers, texture improvers, water absorbants, as prebiotics in dairy products and bakery, seasonings, diet foods, coffee whiteners etc. Applications and functions of these commonly used commercially available mannans have therefore, been highlighted. Mannans improve the texture and appeal of food products and provide numerous health benefits like controlling obesity and body weight control, prebiotic benefits, constipation alleviaton, prevent occurrence of diarrhea, check inflammation due to gut related diseases, management of diverticular disease management, balance intestinal microbiota, immune system modulator, reduced risk of colorectal cancer etc. Mannan degrading enzymes are the key enzymes involved in degradation and are useful in various industrial processes such as fruit juice clarification, viscosity reduction of coffee extracts etc. besides facilitating the process steps and improving process quality.
Collapse
|
16
|
Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol 2017; 102:17-37. [DOI: 10.1007/s00253-017-8564-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
|
17
|
Germec M, Yatmaz E, Karahalil E, Turhan İ. Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system. 3 Biotech 2017; 7:77. [PMID: 28455720 DOI: 10.1007/s13205-017-0694-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022] Open
Abstract
Mannanases, one of the important enzyme group for industry, are produced by numerous filamentous fungi, especially Aspergillus species with different fermentation methods. The aim of this study was to show the best fermentation method of β-mannanase production for fungal growth in fermenter. Therefore, different fermentation strategies in fed-batch fermentation (suspended, immobilized cell, biofilm and microparticle-enhanced bioreactor) were applied for β-mannanase production from glucose medium (GM) and carob extract medium (CEM) by using recombinant Aspergillus sojae. The highest β-mannanase activities were obtained from microparticle-enhanced bioreactor strategy. It was found to be 347.47 U/mL by adding 10 g/L of Al2O3 to GM and 439.13 U/mL by adding 1 g/L of talcum into CEM. The maximum β-mannanase activities for suspended, immobilization, and biofilm reactor remained at 72.55 U/mL in GM, 148.81 U/mL in CEM, and 194.09 U/mL in GM, respectively. The reason for that is the excessive, and irregular shaped growth and bulk formation, inadequate oxygen transfer or substrate diffusion in bioreactor. Consequently, the enzyme activity was significantly enhanced by addition of microparticles compared to other fed-batch fermentation strategies. Also, repeatable β-mannanase activities were obtained by controlling of the cell morphology by adding microparticle inside the fermenter.
Collapse
|
18
|
Production, properties, and applications of endo-β-mannanases. Biotechnol Adv 2017; 35:1-19. [DOI: 10.1016/j.biotechadv.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
19
|
Yatmaz E, Karahalil E, Germec M, Ilgin M, Turhan İ. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production. Bioprocess Biosyst Eng 2016; 39:1391-9. [DOI: 10.1007/s00449-016-1615-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 11/27/2022]
|
20
|
You J, Liu JF, Yang SZ, Mu BZ. Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18. J Biosci Bioeng 2015; 121:140-6. [PMID: 26168907 DOI: 10.1016/j.jbiosc.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/21/2015] [Accepted: 06/06/2015] [Indexed: 02/05/2023]
Abstract
A low-temperature-active and salt-tolerant β-mannanase produced by a novel mannanase-producer, Enterobacter sp. strain N18, was isolated, purified and then evaluated for its potential application as a gel-breaker in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil field. The enzyme could lower the viscosity of guar gum solution by more than 95% within 10 min. The purified β-mannanase with molecular mass of 90 kDa displayed high activity in a broad range of pH and temperature: more than 70% of activity was retained in the pH range of 3.0-8.0 with the optimal pH 7.5, about 50% activity at 20°C with the optimal temperature 50°C. Furthermore, the enzyme retained >70% activity in the presence of 0.5-4.0 M NaCl. These properties implied that the enzyme from strain N18 had potential for serving as a gel-breaker for low temperature oil wells and other industrial fields, where chemical gel breakers were inactive due to low temperature.
Collapse
Affiliation(s)
- Jia You
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China; Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China.
| |
Collapse
|
21
|
Mora-Lugo R, Zimmermann J, Rizk AM, Fernandez-Lahore M. Development of a transformation system for Aspergillus sojae based on the Agrobacterium tumefaciens-mediated approach. BMC Microbiol 2014; 14:247. [PMID: 25253558 PMCID: PMC4186950 DOI: 10.1186/s12866-014-0247-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022] Open
Abstract
Background Aspergillus sojae has been an important filamentous fungus in Biotechnology due to its use in diverse fermentative processes for the production of various food products. Furthermore, this fungus is a common expression system for the production of enzymes and other metabolites. The availability of molecular genetic tools to explore its biology is thus of big interest. In this study, an Agrobacterium tumefaciens-mediated transformation (ATMT) system for A. sojae was developed and its applicability evaluated. Results The donor plasmid named pRM-eGFP was constructed for ATMT of A. sojae. This plasmid contains the ble and egfp genes in its transfer DNA element (T-DNA) to confer phleomycin resistance and express the enhanced green fluorescent protein (EGFP) in A. sojae, respectively. Agrobacterium tumefaciens (LBA4404) harboring the donor plasmid and A. sojae (ATCC 20235) were co-cultured under diverse conditions to achieve ATMT. The maximum number of transformed fungi was obtained after three days of co-culturing at 28°C, and selection with 50 μg/ml phleomycin. Polymerase chain reaction (PCR), fluorescence microscopy and Western Blot analysis for EGFP expression confirmed successful genomic integration of the T-DNA element in A. sojae. The T-DNA was mitotically stable in approximately 40% of the fungal transformants after four generations of sub-culturing under phleomycin pressure. Conclusion We successfully established a new ATMT protocol for A. sojae. This transformation system should enable further protein expression studies on this filamentous fungus.
Collapse
|
22
|
Srivastava PK, Kapoor M. COST-EFFECTIVE ENDO-MANNANASE FROMBacillussp. CFR1601 AND ITS APPLICATION IN GENERATION OF OLIGOSACCHARIDES FROM GUAR GUM AND AS DETERGENT ADDITIVE. Prep Biochem Biotechnol 2013; 44:392-417. [DOI: 10.1080/10826068.2013.833108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Jooste T, García-Aparicio MP, Brienzo M, van Zyl WH, Görgens JF. Enzymatic Hydrolysis of Spent Coffee Ground. Appl Biochem Biotechnol 2013; 169:2248-62. [DOI: 10.1007/s12010-013-0134-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
|
24
|
Optimization of production conditions for β-mannanase using apple pomace as raw material in solid-state fermentation. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0449-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
25
|
Wu M, Tang C, Li J, Zhang H, Guo J. Bimutation breeding of Aspergillus niger strain for enhancing β-mannanase production by solid-state fermentation. Carbohydr Res 2011; 346:2149-55. [DOI: 10.1016/j.carres.2011.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 02/07/2023]
|
26
|
Purification and characterization of a β-1,3-glucomannanase expressed in Pichia pastoris. Enzyme Microb Technol 2011; 49:223-8. [DOI: 10.1016/j.enzmictec.2011.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/22/2011] [Accepted: 04/04/2011] [Indexed: 11/21/2022]
|