1
|
Vasios AG, Skonta A, Patila M, Stamatis H. Biocatalytic Performance of β-Glucosidase Immobilized on 3D-Printed Single- and Multi-Channel Polylactic Acid Microreactors. MICROMACHINES 2024; 15:288. [PMID: 38399016 PMCID: PMC10893134 DOI: 10.3390/mi15020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Microfluidic devices have attracted much attention in the current day owing to the unique advantages they provide. However, their application for industrial use is limited due to manufacturing limitations and high cost. Moreover, the scaling-up process of the microreactor has proven to be difficult. Three-dimensional (3D) printing technology is a promising solution for the above obstacles due to its ability to fabricate complex structures quickly and at a relatively low cost. Hence, combining the advantages of the microscale with 3D printing technology could enhance the applicability of microfluidic devices in the industrial sector. In the present work, a 3D-printed single-channel immobilized enzyme microreactor with a volume capacity of 30 μL was designed and created in one step via the fused deposition modeling (FDM) printing technique, using polylactic acid (PLA) as the printing material. The microreactor underwent surface modification with chitosan, and β-glucosidase from Thermotoga maritima was covalently immobilized. The immobilized biocatalyst retained almost 100% of its initial activity after incubation at different temperatures, while it could be effectively reused for up to 10 successful reaction cycles. Moreover, a multi-channel parallel microreactor incorporating 36 channels was developed, resulting in a significant increase in enzymatic productivity.
Collapse
Affiliation(s)
| | | | | | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.-G.V.); (A.S.); (M.P.)
| |
Collapse
|
2
|
Wang F, Wang H, Kang K, Zhang X, Fraser K, Zhang F, Linhardt RJ. β-Glucosidase on clay minerals: Structure and function in the synthesis of octyl glucoside. Int J Biol Macromol 2024; 256:128386. [PMID: 38008140 DOI: 10.1016/j.ijbiomac.2023.128386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
β-Glucosidase is a biological macromolecule that catalyzes the hydrolysis of various glycosides and oligosaccharides. It may also be used to catalyze the synthesis of glycosides under suitable conditions. Carrier-bound β-glucosidase can enhance the enzymatic activity in the synthesis of glycosides in organic solvent solutions, although the molecular mechanism regulating activity is yet unknown. This study investigated the impact of utilizing montmorillonite (Mmt), attapulgite (Attp), and kaolinite (Kao) as carriers on the activity of β-glucosidase from Prunus dulcis (PdBg). When Attp was used as carriers, the molecular dynamic (MD) simulations found the distance between pNPG and the active site residues E183 and E387 was minimally impacted by the adsorptions, hence PdBg maintained about 81.3 ± 0.89 % of its native activity. Out of the three clay minerals, the relative activity of PdBg loaded on Mmt was the lowest because of the highest electrostatic energy. The substrate channel of PdBg on Kao is directed towards the surface, limiting the accessibility of substrates. Secondary structure and conformation studies revealed that the conformational stability of PdBg in solvent solutions was enhanced by coupling to Attp. Unlike dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) and 1,2-dimethoxyethane (DME), tert-butanol (t-BA) did not penetrate into the active site of PdBg interfering with its binding to the substrate. The maximum yield of n-octyl-β-glucoside (OGP) synthesis catalyzed by Attp-immobilized PdBg reached 48.3 %.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Haohao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Kang Kang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Keith Fraser
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
3
|
Mól PCG, Veríssimo LAA, Minim LA, da Silva R. Adsorption and immobilization of β-glucosidase from Thermoascus aurantiacus on macroporous cryogel by hydrophobic interaction. Prep Biochem Biotechnol 2023; 53:297-307. [PMID: 35671239 DOI: 10.1080/10826068.2022.2081860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Enzyme immobilization has been reported as a promising approach to improving parameters such as thermal stability, pH and reusability. In this study, a polyacrylamide cryogel functionalized with L-phenylalanine was prepared to be used in the adsorption of β-glucosidase from Thermoascus aurantiacus, aiming at its separation and also its immobilization on the cryogel matrix. The enzyme was produced by solid state fermentation. First, the adsorption was studied as a function of the pH and the resulting yield (Y, %) and purification factor (PF, dimensionless) were determined (1.57-5.13 and 64.19-91.20, respectively). The PF and yield from eluate samples obtained at pH 3.0 were the highest (5.13 and 91.20, respectively). Then, β-glucosidase was immobilized on the hydrophobic cryogel and the recovery activities (%) were determined as a function of temperature and in the presence of different saline solutions. The values ranged from 14.45 to 45.97. As expected, salt type and ionic strength affected the activity remained in the immobilized β-glucosidase. The average bioreactor activity was 39.9 U/g of dry cryogel and its operational stability was measured, with no decrease in activity being observed during seven cycles. Kinetic parameters of free and immobilized enzyme were determined according to different models.
Collapse
Affiliation(s)
- Paula Chequer Gouveia Mól
- Laboratory of Biochemistry and Applied Microbiology, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil
| | | | - Luis Antonio Minim
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Roberto da Silva
- Laboratory of Biochemistry and Applied Microbiology, UNESP - São Paulo State University, São José do Rio Preto, SP, Brazil
| |
Collapse
|
4
|
Sannino F, Costantini A, Ruffo F, Aronne A, Venezia V, Califano V. Covalent Immobilization of β-Glucosidase into Mesoporous Silica Nanoparticles from Anhydrous Acetone Enhances Its Catalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E108. [PMID: 31948120 PMCID: PMC7022324 DOI: 10.3390/nano10010108] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023]
Abstract
An immobilization protocol of a model enzyme into silica nanoparticles was applied. This protocol exploited the use of the bifunctional molecule triethoxysilylpropylisocyanate (TEPI) for covalent binding through a linker of suitable length. The enzyme β-glucosidase (BG) was anchored onto wrinkled silica nanoparticles (WSNs). BG represents a bottleneck in the conversion of lignocellulosic biomass into biofuels through cellulose hydrolysis and fermentation. The key aspect of the procedure was the use of an organic solvent (anhydrous acetone) in which the enzyme was not soluble. This aimed to restrict its conformational changes and thus preserve its native structure. This approach led to a biocatalyst with improved thermal stability, characterized by high immobilization efficiency and yield. It was found that the apparent KM value was about half of that of the free enzyme. The Vmax was about the same than that of the free enzyme. The biocatalyst showed a high operational stability, losing only 30% of its activity after seven reuses.
Collapse
Affiliation(s)
- Filomena Sannino
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici (Na), Italy;
| | - Aniello Costantini
- Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy; (A.A.); (V.V.)
| | - Francesco Ruffo
- Department of Chemical Science, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo via Cintia, 80126 Napoli, Italy;
| | - Antonio Aronne
- Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy; (A.A.); (V.V.)
| | - Virginia Venezia
- Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy; (A.A.); (V.V.)
| | | |
Collapse
|
5
|
Yang X, Ma Y, Li L. β-Glucosidase from tartary buckwheat immobilization on bifunctionalized nano-magnetic iron oxide and its application in tea soup for aroma and flavonoid aglycone enhancement. Food Funct 2019; 10:5461-5472. [PMID: 31406968 DOI: 10.1039/c9fo00283a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
β-Glucosidase (BG) was immobilized on the surface of bifunctionalized nano-magnetic iron oxide with silica and amine groups (Fe3O4@SiO2-NH2). The aroma and flavonoid aglycone enhancement effect of BG in tea soup was investigated. The immobilized BG-synthesized nanocomposite morphology and structure were characterized by using different analytical techniques, including Fourier transform infrared spectroscopy and scanning electron microscopy. The immobilized BG showed enhanced pH and temperature endurance at an optimum pH of 5.0 and temperature of 65 °C. After seven cycles of reuse, immobilized BG showed 51.8% initial activity. Immobilized-BG treatment in green tea and black tea soup elevated the aroma content by approximately 16% and 48%, respectively. In addition, flavonoid aglycones, such as myricetin, kaempferol, and quercetin, in green tea and black tea soup increased by approximately 65- and 5-fold, respectively. These results suggested that immobilized BG showed excellent potential in the enhancement of aroma and effectively hydrolyzed the flavonoid glycosides to release flavonoid aglycones in tea soup. Hence, this study provides a green and sustainable approach for the tea industry to efficiently enhance tea soup properties.
Collapse
Affiliation(s)
- Xilian Yang
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Yunnan 650500, China.
| | - Yanli Ma
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Yunnan 650500, China.
| | - Lirong Li
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Yunnan 650500, China.
| |
Collapse
|
6
|
Guilherme EPX, de Oliveira JP, de Carvalho LM, Brandi IV, Santos SHS, de Carvalho GGP, Cota J, Mara Aparecida de Carvalho B. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis. Electrophoresis 2017; 38:2940-2946. [DOI: 10.1002/elps.201700208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Igor Viana Brandi
- Institute of Agricultural Sciences; Federal University of Minas Gerais; Montes Claros MG Brazil
| | | | | | - Junio Cota
- Institute of Agricultural Sciences; Federal University of Minas Gerais; Montes Claros MG Brazil
| | | |
Collapse
|
7
|
Kumar P, Ryan B, Henehan G. β-Glucosidase from Streptomyces griseus : Nanoparticle immobilisation and application to alkyl glucoside synthesis. Protein Expr Purif 2017; 132:164-170. [DOI: 10.1016/j.pep.2017.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/14/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
|
8
|
Plaza M, Turner C. Pressurized Hot Water Extraction of Bioactives. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Development of supermacroporous monolithic adsorbents for purifying lectins by affinity with sugars. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:406-412. [DOI: 10.1016/j.jchromb.2016.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
10
|
Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives. Molecules 2016; 21:molecules21081074. [PMID: 27548117 PMCID: PMC6274110 DOI: 10.3390/molecules21081074] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.
Collapse
|
11
|
Mastour Tehrani S, Lu Y, Guerin G, Soleimani M, Pichugin D, Winnik MA. Temperature-Invariant Aqueous Microgels as Hosts for Biomacromolecules. Biomacromolecules 2015; 16:3134-44. [PMID: 26335392 DOI: 10.1021/acs.biomac.5b00768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immobilization of enzymes on solid supports has been widely used to improve enzyme recycling, enzyme stability, and performance. We are interested in using aqueous microgels (colloidal hydrogels) as carriers for enzymes used in high-temperature reactions. These microgels should maintain their volume and colloidal stability in aqueous media up to 100 °C to serve as thermo-stable supports for enzymes. For this purpose, we prepared poly(N-hydroxyethyl acrylamide) (PHEAA) microgels via a two-step synthesis. First, we used precipitation polymerization in water to synthesize colloidal poly(diethylene glycol-ethyl ether acrylate) (PDEGAC) particles as a precursor. PDEGAC forms solvent swollen microgels in organic solvents such as methanol and dioxane and in water at temperatures below 15 °C. In the second step, these PDEGAC particles were transformed to PHEAA microgels through aminolysis in dioxane with ethanolamine and a small amount of ethylenediamine. Dynamic laser scattering studies confirmed that the colloidal stability of microgels was maintained during the aminolysis in dioxane and subsequent transfer to water. Characterization of the PHEAA microgels indicated about 9 mol % of primary amino groups. These provide functionality for bioconjugation. As proof-of-concept experiments, we attached the enzyme horseradish peroxidase (HRP) to these aqueous microgels through (i) N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride (EDC) coupling to the carboxylated microgels or (ii) bis-aryl hydrazone (BAH) coupling to microgels functionalized with 6-hydrazinonicotinate acetone (PHEAA-HyNic). Our results showed that HRP maintained its catalytic activity after covalent attachment (87% for EDC coupling, 96% for BAH coupling). The microgel enhanced the stability of the enzyme to thermal denaturation. For example, the residual activity of the microgel-supported enzyme was 76% after 330 min of annealing at 50 °C, compared to only 20% for the free enzyme under these conditions. PHEAA microgels in water show great promise as hosts for enzymatic reaction, especially at elevated temperatures.
Collapse
Affiliation(s)
- Sepehr Mastour Tehrani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto ON M5S 3E5, Canada.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Yijie Lu
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Gerald Guerin
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Mohsen Soleimani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto ON M5S 3E5, Canada.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto ON M5S 3E5, Canada.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto ON M5S 3H6, Canada
| |
Collapse
|
12
|
|
13
|
Javed MR, Buthe A, Rashid MH, Wang P. Cost-efficient entrapment of β-glucosidase in nanoscale latex and silicone polymeric thin films for use as stable biocatalysts. Food Chem 2015. [PMID: 26213079 DOI: 10.1016/j.foodchem.2015.06.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Glucosidase is an ubiquitous enzyme which has enormous biotechnological applications. Its deficiency in natural enzyme preparations is often overcome by exogenous supplementation, which further increases the enzyme utilization cost. Enzyme immobilization offers a potential solution through enzyme recycling and easy recovery. In the present work Aspergillus niger β-glucosidase is immobilized within nanoscale polymeric materials (polyurethane, latex and silicone), through entrapment, and subsequently coated onto a fibrous support. Highest apparent activity (90 U g(-1) polymer) was observed with latex, while highest entrapment efficiency (93%) was observed for the silicone matrix. Immobilization resulted in the thermo-stabilization of the β-glucosidase with an increase in optimum temperature and activation energy for cellobiose hydrolysis. Supplementation to cellulases also resulted in an increased cellulose hydrolysis, while retaining more than 70% functional stability. Hence, the current study describes novel preparations of immobilized β-glucosidase as highly stable and active catalysts for industrial food- and bio-processing applications.
Collapse
Affiliation(s)
- Muhammad Rizwan Javed
- Nanobiotechnology Lab, Department of Bioproducts and Biosystems Engineering, Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Andreas Buthe
- c-LEcta GmbH, Perlickstraße 5, 04103 Leipzig, Germany
| | - Muhammad Hamid Rashid
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Ping Wang
- Nanobiotechnology Lab, Department of Bioproducts and Biosystems Engineering, Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Samaratunga A, Kudina O, Nahar N, Zakharchenko A, Minko S, Voronov A, Pryor SW. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles. Appl Biochem Biotechnol 2015; 176:1114-30. [DOI: 10.1007/s12010-015-1633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022]
|
15
|
Zhang J, Wang D, Pan J, Wang J, Zhao H, Li Q, Zhou X. Efficient resveratrol production by immobilized β-glucosidase on cross-linked chitosan microsphere modified by l-lysine. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Site directed immobilization of glucose-6-phosphate dehydrogenase via thiol-disulfide interchange: Influence on catalytic activity of cysteines introduced at different positions. J Biotechnol 2013; 167:1-7. [DOI: 10.1016/j.jbiotec.2013.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 11/21/2022]
|
17
|
Lindahl S, Liu J, Khan S, Nordberg Karlsson E, Turner C. An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glucosides from onions. Anal Chim Acta 2013; 785:50-9. [DOI: 10.1016/j.aca.2013.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
|
18
|
Improved biocatalysts based on Bacillus circulans β-galactosidase immobilized onto epoxy-activated acrylic supports: Applications in whey processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|