1
|
Wu HR, Anwar MT, Fan CY, Low PY, Angata T, Lin CC. Expedient assembly of Oligo-LacNAcs by a sugar nucleotide regeneration system: Finding the role of tandem LacNAc and sialic acid position towards siglec binding. Eur J Med Chem 2019; 180:627-636. [PMID: 31351394 DOI: 10.1016/j.ejmech.2019.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 11/28/2022]
Abstract
Sialosides containing (oligo-)N-acetyllactosamine (LacNAc, Galβ(1,4)GlcNAc) as core structure are known to serve as ligands for Siglecs. However, the role of tandem inner epitope for Siglec interaction has never been reported. Herein, we report the effect of internal glycan (by length and type) on the binding affinity and describe a simple and efficient chemo-enzymatic sugar nucleotide regeneration protocol for the preparative-scale synthesis of oligo-LacNAcs by the sequential use of β1,4-galactosyltransferase (β4GalT) and β1,3-N-acetylglucosyl transferase (β3GlcNAcT). Further modification of these oligo-LacNAcs was performed in one-pot enzymatic synthesis to yield sialylated and/or fucosylated analogs. A glycan library of 23 different sialosides containing various LacNAc lengths or Lac core with natural/unnatural sialylation and/or fucosylation was synthesized. These glycans were used to fabricate a glycan microarray that was utilized to screen glycan binding preferences against five different Siglecs (2, 7, 9, 14 and 15).
Collapse
Affiliation(s)
- Hsin-Ru Wu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Instrumentation Center of Ministry of Science and Technology at National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | | | - Chen-Yo Fan
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Penk Yeir Low
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
2
|
Laaf D, Bojarová P, Elling L, Křen V. Galectin-Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol 2018; 37:402-415. [PMID: 30413271 DOI: 10.1016/j.tibtech.2018.10.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
Cellular communication events are mediated by interactions between cell-surface sugars and lectins, which are carbohydrate-binding proteins. Galectins are β-galactosyl-binding lectins that bridge molecules by their sugar moieties, forming a signaling and adhesion network. Severe changes in glycosylation and galectin expression accompany major processes in oncogenesis, cardiovascular disorders, and other pathologies, making galectins attractive therapeutic targets. Here we discuss advanced strategies of chemo-enzymatic carbohydrate synthesis for creating lead glycomimetics and (neo-)glycoconjugates for galectin-1 and -3 targeting in biomedicine and biotechnology. We will describe the challenges and bottlenecks on the route into biomedical and biotechnological practice and present the first clinical candidates. The coming era will see an exciting translation of selective well-defined high-affinity galectin ligands from bench to bedside.
Collapse
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany; Equally contributing authors
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Equally contributing authors
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
3
|
Bojarová P, Křen V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 2018; 4:1142-60. [PMID: 27075026 DOI: 10.1039/c6bm00088f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants.
Collapse
Affiliation(s)
- P Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - V Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
4
|
Two-Step Enzymatic Synthesis of β-d
-N
-Acetylgalactosamine-(1→4)-d
-N
-acetylglucosamine (LacdiNAc) Chitooligomers for Deciphering Galectin Binding Behavior. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Bojarová P, Chytil P, Mikulová B, Bumba L, Konefał R, Pelantová H, Krejzová J, Slámová K, Petrásková L, Kotrchová L, Cvačka J, Etrych T, Křen V. Glycan-decorated HPMA copolymers as high-affinity lectin ligands. Polym Chem 2017. [DOI: 10.1039/c7py00271h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New conjugates of N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers tethered with chitooligosaccharidic epitopes of varying lengths are potent ligands of wheat germ agglutinin, reaching subnanomolar binding affinities.
Collapse
|
6
|
Wahl C, Hirtz D, Elling L. Multiplexed Capillary Electrophoresis as Analytical Tool for Fast Optimization of Multi-Enzyme Cascade Reactions - Synthesis of Nucleotide Sugars: Dedicated to Prof. Dr. Vladimir Křen on the occasion of his 60 th birthday. Biotechnol J 2016; 11:1298-1308. [PMID: 27311566 DOI: 10.1002/biot.201600265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023]
Abstract
Nucleotide sugars are considered as bottleneck and expensive substrates for enzymatic glycan synthesis using Leloir-glycosyltransferases. Synthesis from cheap substrates such as monosaccharides is accomplished by multi-enzyme cascade reactions. Optimization of product yields in such enzyme modules is dependent on the interplay of multiple parameters of the individual enzymes and governed by a considerable time effort when convential analytic methods like capillary electrophoresis (CE) or HPLC are applied. We here demonstrate for the first time multiplexed CE (MP-CE) as fast analytical tool for the optimization of nucleotide sugar synthesis with multi-enzyme cascade reactions. We introduce a universal separation method for nucleotides and nucleotide sugars enabling us to analyze the composition of six different enzyme modules in a high-throughput format. Optimization of parameters (T, pH, inhibitors, kinetics, cofactors and enzyme amount) employing MP-CE analysis is demonstrated for enzyme modules for the synthesis of UDP-α-D-glucuronic acid (UDP-GlcA) and UDP-α-D-galactose (UDP-Gal). In this way we achieve high space-time-yields: 1.8 g/L⋆h for UDP-GlcA and 17 g/L⋆h for UDP-Gal. The presented MP-CE methodology has the impact to be used as general analytical tool for fast optimization of multi-enzyme cascade reactions.
Collapse
Affiliation(s)
- Claudia Wahl
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Dennis Hirtz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Lange B, Šimonová A, Fischöder T, Pelantová H, Křen V, Elling L. Towards Keratan Sulfate - Chemoenzymatic Cascade Synthesis of SulfatedN-Acetyllactosamine (LacNAc) Glycan Oligomers. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Henze M, Schmidtke S, Hoffmann N, Steffens H, Pietruszka J, Elling L. Combination of Glycosyltransferases and a Glycosynthase in Sequential and One-Pot Reactions for the Synthesis of Type 1 and Type 2N-Acetyllactosamine Oligomers. ChemCatChem 2015. [DOI: 10.1002/cctc.201500645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manja Henze
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Simon Schmidtke
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Natalie Hoffmann
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
| | - Hanna Steffens
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
- IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Lothar Elling
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| |
Collapse
|
9
|
Enzyme Module Systems for the Synthesis of Uridine 5′-Diphospho-α-D
-glucuronic Acid and Non-Sulfated Human Natural Killer Cell-1 (HNK-1) Epitope. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Park H, Rosencrantz RR, Elling L, Böker A. Glycopolymer Brushes for Specific Lectin Binding by Controlled Multivalent Presentation ofN-Acetyllactosamine Glycan Oligomers. Macromol Rapid Commun 2014; 36:45-54. [DOI: 10.1002/marc.201400453] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Hyunji Park
- DWI - Leibniz-Institut für Interaktive Materialien; Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstr. 50 52074 Aachen Germany
| | - Ruben R. Rosencrantz
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Lothar Elling
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Alexander Böker
- DWI - Leibniz-Institut für Interaktive Materialien; Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstr. 50 52074 Aachen Germany
| |
Collapse
|
11
|
Rational design of a glycosynthase by the crystal structure of β-galactosidase from Bacillus circulans (BgaC) and its use for the synthesis of N-acetyllactosamine type 1 glycan structures. J Biotechnol 2014; 191:78-85. [PMID: 25034434 DOI: 10.1016/j.jbiotec.2014.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 11/20/2022]
Abstract
The crystal structure of β-galactosidase from Bacillus circulans (BgaC) was determined at 1.8Å resolution. The overall structure of BgaC consists of three distinct domains, which are the catalytic domain with a TIM-barrel structure and two all-β domains (ABDs). The main-chain fold and steric configurations of the acidic and aromatic residues at the active site were very similar to those of Streptococcus pneumoniae β(1,3)-galactosidase BgaC in complex with galactose. The structure of BgaC was used for the rational design of a glycosynthase. BgaC belongs to the glycoside hydrolase family 35. The essential nucleophilic amino acid residue has been identified as glutamic acid at position 233 by site-directed mutagenesis. Construction of the active site mutant BgaC-Glu233Gly gave rise to a galactosynthase transferring the sugar moiety from α-d-galactopyranosyl fluoride (αGalF) to different β-linked N-acetylglucosamine acceptor substrates in good yield (40-90%) with a remarkably stable product formation. Enzymatic syntheses with BgaC-Glu233Gly afforded the stereo- and regioselective synthesis of β1-3-linked key galactosides like galacto-N-biose or lacto-N-biose.
Collapse
|
12
|
Šimonová A, Kupper CE, Böcker S, Müller A, Hofbauerová K, Pelantová H, Elling L, Křen V, Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|