1
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Novoa C, Dhoke GV, Mate DM, Martínez R, Haarmann T, Schreiter M, Eidner J, Schwerdtfeger R, Lorenz P, Davari MD, Jakob F, Schwaneberg U. KnowVolution of a Fungal Laccase toward Alkaline pH. Chembiochem 2019; 20:1458-1466. [DOI: 10.1002/cbic.201800807] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Catalina Novoa
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
| | - Gaurao V. Dhoke
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Diana M. Mate
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Present address: Center of Molecular Biology “Severo Ochoa”Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
| | - Ronny Martínez
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
- Present address: Departamento de Ingeniería en AlimentosInstituto de Investigación Multidisciplinario en Ciencia y TecnologíaUniversidad de La Serena Raúl Bitrán 1305 1720010 La Serena Chile
| | | | | | - Jasmin Eidner
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | | | - Patrick Lorenz
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Felix Jakob
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
3
|
Yang J, Ruff AJ, Arlt M, Schwaneberg U. Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries. Biotechnol Bioeng 2017; 114:1921-1927. [DOI: 10.1002/bit.26327] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/23/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Jianhua Yang
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 Aachen 52074 Germany
| | - Anna J. Ruff
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 Aachen 52074 Germany
| | - Marcus Arlt
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 Aachen 52074 Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 Aachen 52074 Germany
- DWI-Leibniz Institut für Interaktive Materialien; Aachen Germany
| |
Collapse
|
4
|
Abstract
Mutagenesis Assistant Program (MAP) is a web-based statistical tool to develop directed evolution strategies by investigating the consequences at the amino acid level of the mutational biases of random mutagenesis methods on any given gene. The latest development of the program, the MAP(2.0)3D server, correlates the generated amino acid substitution patterns of a specific random mutagenesis method to the sequence and structural information of the target protein. The combined information can be used to select an experimental strategy that improves the chances of obtaining functionally efficient and/or stable enzyme variants. Hence, the MAP(2.0)3D server facilitates the "in silico" prescreening of the target gene by predicting the amino acid diversity generated in a random mutagenesis library. Here, we describe the features of MAP(2.0)3D server by analyzing, as an example, the cytochrome P450BM3 monooxygenase (CYP102A1). The MAP(2.0)3D server is available publicly at http://map.jacobs-university.de/map3d.html.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | | | | | | |
Collapse
|
5
|
Zhao J, Kardashliev T, Joëlle Ruff A, Bocola M, Schwaneberg U. Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnol Bioeng 2014; 111:2380-9. [DOI: 10.1002/bit.25302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Zhao
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Tsvetan Kardashliev
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
6
|
Ruff AJ, Kardashliev T, Dennig A, Schwaneberg U. The Sequence Saturation Mutagenesis (SeSaM) method. Methods Mol Biol 2014; 1179:45-68. [PMID: 25055770 DOI: 10.1007/978-1-4939-1053-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sequence Saturation Mutagenesis (SeSaM) is a random mutagenesis method developed to overcome the limitations of existing error-prone PCR (epPCR) protocols. SeSaM is advantageous with respect to (1) elimination of mutagenic "hot spots", (2) increase in frequency of subsequent nucleotide substitutions, (3) control over the mutational bias through the utilization of universal base analogs, and, consequently, (4) the prospect of generating transversion-enriched mutant libraries. These advanced features lead to chemically diverse mutant libraries on the protein level, essentially making SeSaM a complementary technology to transition biased epPCR mutagenesis methods.
Collapse
Affiliation(s)
- Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen, 52074, Germany
| | | | | | | |
Collapse
|
8
|
Verma R, Schwaneberg U, Roccatano D. Computer-Aided Protein Directed Evolution: a Review of Web Servers, Databases and other Computational Tools for Protein Engineering. Comput Struct Biotechnol J 2012; 2:e201209008. [PMID: 24688649 PMCID: PMC3962222 DOI: 10.5936/csbj.201209008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/07/2012] [Accepted: 10/12/2012] [Indexed: 12/01/2022] Open
Abstract
The combination of computational and directed evolution methods has proven a winning strategy for protein engineering. We refer to this approach as computer-aided protein directed evolution (CAPDE) and the review summarizes the recent developments in this rapidly growing field. We will restrict ourselves to overview the availability, usability and limitations of web servers, databases and other computational tools proposed in the last five years. The goal of this review is to provide concise information about currently available computational resources to assist the design of directed evolution based protein engineering experiment.
Collapse
Affiliation(s)
- Rajni Verma
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany ; Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|