1
|
Lowe PT, Lüddecke I, O'Hagan D. Exploring Fluorinase Substrate Tolerance at C-2 of SAM. Chembiochem 2025; 26:e202400861. [PMID: 39551710 DOI: 10.1002/cbic.202400861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The fluorinase enzyme (EC 2.5.1.63) utilises fluoride ion and S-adenosyl-L-methionine (SAM) as substrates for conversion to 5'-fluoro-5'-deoxy-adenosine (5'-FDA) and L-methionine (L-Met). The enzyme has a very strict substrate specificity, however it has been shown to tolerate acetylenes and NH2 replacements for H at C-2 of the adenine ring of SAM. This substrate tolerance is explored further here with -NHR, -N3, -OR and -SR substituents attached to C-2. New activities are demonstrated, for example with NH-methyl, NH-propyl,NH-butyl and O-butyl substrates at C-2, however azide and thioethers were not tolerated. Outcomes are supported by in silico analysis, revealing favourable H-bonding interactions involving NH and O substituents at the adenine C-2 position with N278 and the backbone amide of A279 at the active site respectively. The study informs on the selectivity of the fluorinase as a tool for radiolabelling candidate ligands with fluorine-18 for positron emission tomography programmes.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, KY16 9ST, St Andrews, UK
| | - Isabeau Lüddecke
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, KY16 9ST, St Andrews, UK
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, KY16 9ST, St Andrews, UK
| |
Collapse
|
2
|
Feng X, Jin M, Huang W, Liu W, Xian M. Whole-cell catalysis by surface display of fluorinase on Escherichia coli using N-terminal domain of ice nucleation protein. Microb Cell Fact 2021; 20:206. [PMID: 34715875 PMCID: PMC8555313 DOI: 10.1186/s12934-021-01697-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Background Fluorinases play a unique role in the production of fluorine-containing organic molecules by biological methods. Whole-cell catalysis is a better choice in the large-scale fermentation processes, and over 60% of industrial biocatalysis uses this method. However, the in vivo catalytic efficiency of fluorinases is stuck with the mass transfer of the substrates. Results A gene sequence encoding a protein with fluorinase function was fused to the N-terminal of ice nucleation protein, and the fused fluorinase was expressed in Escherichia coli BL21(DE3) cells. SDS-PAGE and immunofluorescence microscopy were used to demonstrate the surface localization of the fusion protein. The fluorinase displayed on the surface showed good stability while retaining the catalytic activity. The engineered E.coli with surface-displayed fluorinase could be cultured to obtain a larger cell density, which was beneficial for industrial application. And 55% yield of 5′-fluorodeoxyadenosine (5′-FDA) from S-adenosyl-L-methionine (SAM) was achieved by using the whole-cell catalyst. Conclusions Here, we created the fluorinase-containing surface display system on E.coli cells for the first time. The fluorinase was successfully displayed on the surface of E.coli and maintained its catalytic activity. The surface display provides a new solution for the industrial application of biological fluorination. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01697-x.
Collapse
Affiliation(s)
- Xinming Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Jin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Huang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
3
|
Tu C, Zhou J, Peng L, Man S, Ma L. Self-assembled nano-aggregates of fluorinases demonstrate enhanced enzymatic activity, thermostability and reusability. Biomater Sci 2020; 8:648-656. [PMID: 31761913 DOI: 10.1039/c9bm00402e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three SAP (self-assembling peptide)-tagged fluorinases (FLAs), namely, FLA-ELK16, FLA-L6KD and FLA-18A (named after the SAP used for tagging FLA) were successfully engineered. All three SAP-tagged FLAs could be highly over-expressed using engineered E. coli host cells despite being in the form of aggregates (inclusion bodies). It was noted that all three SAP-tagged FLAs exhibited enzymatic activity. It was also observed that all three SAP-tagged FLAs were capable of self-assembly to form nano-sized particles with different dimensions in aqueous solutions. Strikingly, one of the SAP-tagged FLA (FLA-L6KD) displayed improved enzyme activity, thermostability and reusability, which is potentially ideal for bio-transformation. FLA is an exotic enzyme that is capable of catalysing the formation of C-F bonds using inorganic fluorine ions as substrates. This significant feature enables it to incorporate [18F]-fluoride into different small molecules to generate radiopharmaceuticals in PET (positron emission tomography) labeling. In addition, fluorinase is greatly valuable in synthetic biology for incorporating the fluorine element into building blocks to produce non-natural organofluorines or as a biocatalyst for transforming non-native substrates. Our method would be a further step in making FLA-based biocatalysis even 'greener' by enhancing the enzymatic activity, thermostability and reusability of FLA through the introduction of nano-sized aggregates. Enzymes are such nontrivial biomaterials, which can be manifested in different scenarios. Our research expands their reach and tunes their properties by tagging SAP partners. Thus, this methodology can be put into the 'toolbox' of enzymologists, which can be further explored and generalised for others.
Collapse
Affiliation(s)
- Chunhao Tu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
4
|
da Silva ES, Gómez-Vallejo V, López-Gallego F, Llop J. Biocatalysis in radiochemistry: Enzymatic incorporation of PET radionuclides into molecules of biomedical interest. J Labelled Comp Radiopharm 2018; 61:332-354. [DOI: 10.1002/jlcr.3592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Eunice S. da Silva
- Radiochemistry and Nuclear Imaging; CIC biomaGUNE; San Sebastian Gipuzkoa Spain
- Analytical Department; Syncom BV; Groningen The Netherlands
| | | | - Fernando López-Gallego
- Heterogeneous Biocatalysis laboratory; CIC biomaGUNE; San Sebastian Gipuzkoa Spain
- IKERBASQUE, Basque Foundation for Science; Bilbao Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging; CIC biomaGUNE; San Sebastian Gipuzkoa Spain
| |
Collapse
|
5
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
6
|
Carvalho MF, Oliveira RS. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit Rev Biotechnol 2017; 37:880-897. [PMID: 28049355 DOI: 10.1080/07388551.2016.1267109] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorinated compounds are finding increasing uses in several applications. They are employed in almost all areas of modern society. These compounds are all produced by chemical synthesis and their abundance highly contrasts with fluorinated molecules of natural origin. To date, only some plants and a handful of actinomycetes species are known to produce a small number of fluorinated compounds that include fluoroacetate (FA), some ω-fluorinated fatty acids, nucleocidin, 4-fluorothreonine (4-FT), and the more recently identified (2R3S4S)-5-fluoro-2,3,4-trihydroxypentanoic acid. This largely differs from other naturally produced halogenated compounds, which totals more than 5000. The mechanisms underlying biological fluorination have been uncovered after discovering the first actinomycete species, Streptomyces cattleya, that is capable of producing FA and 4-FT, and a fluorinase has been identified as the enzyme responsible for the formation of the C-F bond. The discovery of this enzyme has opened new perspectives for the biotechnological production of fluorinated compounds and many advancements have been achieved in its application mainly as a biocatalyst for the synthesis of [18F]-labeled radiotracers for medical imaging. Natural fluorinated compounds may also be derived from abiogenic sources, such as volcanoes and rocks, though their concentrations and production mechanisms are not well known. This review provides an outlook of what is currently known about fluorinated compounds with natural origin. The paucity of these compounds and the biological mechanisms responsible for their production are addressed. Due to its relevance, special emphasis is given to the discovery, characterization and biotechnological potential of the unique fluorinase enzyme.
Collapse
Affiliation(s)
- Maria F Carvalho
- a CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto , Porto , Portugal
| | - Rui S Oliveira
- b Centre for Functional Ecology, Department of Life Sciences , University of Coimbra , Coimbra , Portugal.,c Department of Environmental Health , Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of Porto , Porto , Portugal
| |
Collapse
|
7
|
Sergeev ME, Morgia F, Lazari M, Wang C, van Dam RM. Titania-catalyzed radiofluorination of tosylated precursors in highly aqueous medium. J Am Chem Soc 2015; 137:5686-94. [PMID: 25860121 DOI: 10.1021/jacs.5b02659] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleophilic radiofluorination is an efficient synthetic route to many positron-emission tomography (PET) probes, but removal of water to activate the cyclotron-produced [(18)F]fluoride has to be performed prior to reaction, which significantly increases overall radiolabeling time and causes radioactivity loss. In this report, we demonstrate the possibility of (18)F-radiofluorination in highly aqueous medium. The method utilizes titania nanoparticles, 1:1 (v/v) acetonitrile-thexyl alcohol solvent mixture, and tetra-n-butylammonium bicarbonate as a phase-transfer agent. Efficient radiolabeling is directly performed with aqueous [(18)F]fluoride without the need for a drying/azeotroping step to significantly reduce radiosynthesis time. High radiochemical purity of the target compound is also achieved. The substrate scope of the synthetic strategy is demonstrated with a range of aromatic, aliphatic, and cycloaliphatic tosylated precursors.
Collapse
Affiliation(s)
- Maxim E Sergeev
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Federica Morgia
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Mark Lazari
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Christopher Wang
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - R Michael van Dam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Odar C, Winkler M, Wiltschi B. Fluoro amino acids: A rarity in nature, yet a prospect for protein engineering. Biotechnol J 2015; 10:427-46. [DOI: 10.1002/biot.201400587] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
|
9
|
da Silva ES, Gómez-Vallejo V, Llop J, López-Gallego F. Efficient nitrogen-13 radiochemistry catalyzed by a highly stable immobilized biocatalyst. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00179j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, an unprecedented strategy for the reduction of [13N]NO3− to [13N]NO2− using a heterogeneous biocatalyst will be presented.
Collapse
Affiliation(s)
| | | | - Jordi Llop
- Radiochemistry and Nuclear Imaging
- CIC biomaGUNE
- San Sebastian
- Spain
| | | |
Collapse
|
10
|
O'Hagan D, Deng H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev 2014; 115:634-49. [PMID: 25253234 DOI: 10.1021/cr500209t] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David O'Hagan
- EaStChem School of Chemistry, University of St Andrews , North Haugh, St Andrews KY169ST, United Kingdom
| | | |
Collapse
|
11
|
Liu J, Guo H, Zhou Q, Wang J, Lin B, Zhang H, Gao Z, Xia C, Zhou X. Highly efficient enzymatic preparation for dimethyl carbonate catalyzed by lipase from Penicillium expansum immobilized on CMC–PVA film. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Sergeev ME, Morgia F, Javed MR, Doi M, Keng PY. Enzymatic radiofluorination: Fluorinase accepts methylaza-analog of SAM as substrate for FDA synthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|