1
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
2
|
Chai LN, Wu H, Wang XJ, He LJ, Guo CF. The Mechanism of Antimicrobial Activity of Conjugated Bile Acids against Lactic Acid Bacilli. Microorganisms 2023; 11:1823. [PMID: 37512995 PMCID: PMC10386348 DOI: 10.3390/microorganisms11071823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanism underlying antimicrobial activity of conjugated bile acids against strains of lactic acid bacilli is not well understood. The purpose of this study was to investigate two typical conjugated bile acids (glycochenodeoxycholic acid and taurochenodeoxycholic acid) for their mechanisms of antimicrobial activity against four strains of different species of lactic acid bacilli at the physiological pH of the small intestine of humans. The bacterial cell membrane integrity, transmembrane potential, and transmembrane pH gradient were examined using the fluorescence probes SYTO 9 plus propidium iodide, 3,3'-dipropylthiadicarbocyanine iodide, and 5(6)-carboxyfluorescein diacetate N-succinimidyl ester, respectively. The intracellular ATP levels were measured by the firefly luciferase-based bioluminescence method. It was found that the antimicrobial activity of conjugated bile acids against the strains of lactic acid bacilli is strain-specific, and glycochenodeoxycholic acid showed significantly greater antimicrobial activity than taurochenodeoxycholic acid against the strains of lactic acid bacilli. The conjugated bile acids inhibited the growth of strains of lactic acid bacilli by disrupting membrane integrity, dissipating transmembrane potential, reducing the transmembrane pH gradient, and depleting intracellular ATP. In conclusion, the antimicrobial activity of conjugated bile acids against lactic acid bacilli is a multifactorial phenomenon. This study will provide valuable information for developing strategies to improve the ability of lactic acid bacilli to tolerate bile in vivo.
Collapse
Affiliation(s)
- Li-Na Chai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Hua Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xue-Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Li-Juan He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chun-Feng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
3
|
Li Y, Cao H, Wang X, Guo L, Ding X, Zhao W, Zhang F. Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34802351 DOI: 10.1080/10408398.2021.2004993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent years, the concept of metaorganism expands our insight into how diet-microbe-host interactions contribute to human health and diseases. We realized that many biological metabolic processes in the host can be summarized into metaorganismal relay pathways, in which metabolites such as trimethylamine-N‑oxide, short-chain fatty acids and bile acids act as double-edged swords (beneficial or harmful effects) in the initiation and progression of diseases. Pleiotropic effects of metabolites are derived from several influencing factors including dose level, targeted organ of effect, action duration and species of these metabolites. Based on the pleiotropic effects of metabolites, personalized therapeutic approaches including microecological agents, enzymatic regulators and changes in dietary habits to govern related metabolite production may provide a new insight in promoting human health. In this review, we summarize our current knowledge of metaorganismal relay pathways and elaborate on the pleiotropic effects of metabolites in these pathways, with special emphasis on related therapeutic nutritional interventions.
Collapse
Affiliation(s)
- Yanmin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoqian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Xiao Y, Zhao J, Zhang H, Zhai Q, Chen W. Mining genome traits that determine the different gut colonization potential of Lactobacillus and Bifidobacterium species. Microb Genom 2021; 7:000581. [PMID: 34100697 PMCID: PMC8461469 DOI: 10.1099/mgen.0.000581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Although the beneficial effects of probiotics are likely to be associated with their ability to colonize the gut, little is known about the characteristics of good colonizers. In a systematic analysis of the comparative genomics, we tried to elucidate the genomic contents that account for the distinct host adaptability patterns of Lactobacillus and Bifidobacterium species. The Bifidobacterium species, with species-level phylogenetic structures affected by recombination among strains, broad mucin-foraging activity, and dietary-fibre-degrading ability, represented niche conservatism and tended to be host-adapted. The Lactobacillus species stretched across three lifestyles, namely free-living, nomadic and host-adapted, as characterized by the variations of bacterial occurrence time, guanine-cytosine (GC) content and genome size, evolution event frequency, and the presence of human-adapted bacterial genes. The numbers and activity of host-adapted factors, such as bile salt hydrolase and intestinal tissue-anchored elements, were distinctly distributed among the three lifestyles. The strains of the three lifestyles could be separated with such a collection of colonization-related genomic content (genes, genome size and GC content). Thus, our work provided valuable information for rational selection and gut engraftment prediction of probiotics. Here, we have found many interesting predictive results for bacterial gut fitness, which will be validated in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, PR China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
5
|
Jia B, Park D, Chun BH, Hahn Y, Jeon CO. Diet-Related Alterations of Gut Bile Salt Hydrolases Determined Using a Metagenomic Analysis of the Human Microbiome. Int J Mol Sci 2021; 22:ijms22073652. [PMID: 33915727 PMCID: PMC8038126 DOI: 10.3390/ijms22073652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
The metabolism of bile acid by the gut microbiota is associated with host health. Bile salt hydrolases (BSHs) play a crucial role in controlling microbial bile acid metabolism. Herein, we conducted a comparative study to investigate the alterations in the abundance of BSHs using data from three human studies involving dietary interventions, which included a ketogenetic diet (KD) versus baseline diet (BD), overfeeding diet (OFD) versus underfeeding diet, and low-carbohydrate diet (LCD) versus BD. The KD increased BSH abundance compared to the BD, while the OFD and LCD did not change the total abundance of BSHs in the human gut. BSHs can be classified into seven clusters; Clusters 1 to 4 are relatively abundant in the gut. In the KD cohort, the levels of BSHs from Clusters 1, 3, and 4 increased significantly, whereas there was no notable change in the levels of BSHs from the clusters in the OFD and LCD cohorts. Taxonomic studies showed that members of the phyla Bacteroidetes, Firmicutes, and Actinobacteria predominantly produced BSHs. The KD altered the community structure of BSH-active bacteria, causing an increase in the abundance of Bacteroidetes and decrease in Actinobacteria. In contrast, the abundance of BSH-active Bacteroidetes decreased in the OFD cohort, and no significant change was observed in the LCD cohort. These results highlight that dietary patterns are associated with the abundance of BSHs and community structure of BSH-active bacteria and demonstrate the possibility of manipulating the composition of BSHs in the gut through dietary interventions to impact human health.
Collapse
Affiliation(s)
- Baolei Jia
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (D.P.); (B.H.C.); (Y.H.)
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (D.P.); (B.H.C.); (Y.H.)
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (D.P.); (B.H.C.); (Y.H.)
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (D.P.); (B.H.C.); (Y.H.)
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (D.P.); (B.H.C.); (Y.H.)
- Correspondence: ; Tel.: +82-2-820-5864
| |
Collapse
|
6
|
Zhou Y, Wang JQ, Hu CH, Ren LQ, Wang DC, Ye BC. Enhancement of bile resistance by maltodextrin supplementation in Lactobacillus plantarum Lp-115. J Appl Microbiol 2019; 126:1551-1557. [PMID: 30790408 DOI: 10.1111/jam.14229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2019] [Indexed: 01/19/2023]
Abstract
AIMS To identify the mechanism in which way maltodextrin enhance bile tolerance in Lactobacillus plantarum Lp-115. METHODS AND RESULTS Based on determining the OD600 value and counting the numbers of viable cells by the pour plate method, the results showed that maltodextrin could not promote the strain growth directly, but could enhance the tolerance of bile in Lp-115. The OD600 value of L. plantarum Lp-115 cultured in MRSB broth with maltodextrin was three times higher than the control value. After supplementing the medium with 4·0% maltodextrin, the highest survival rate was observed when the bile concentration is 0.3%. CONCLUSIONS In summary, maltodextrin exhibited a significant improvement of bile tolerance and it could enhance cell hydrophobicity, shift the fatty acid composition of the membrane and induce the expression of a bile salt hydrolase gene (pva3) significantly. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report concerning the mechanism of maltodextrin enhancing the bile tolerance. This study promotes the application of maltodextrin as a choice to protect probiotic L. plantarum strains against the bile salt stress.
Collapse
Affiliation(s)
- Y Zhou
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - J-Q Wang
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - C-H Hu
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - L-Q Ren
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - D-C Wang
- Culture & Specialities Innovation China, DuPont Nutrition & Health, Danisco (China) Holding Co., Ltd, Changning District, Shanghai, China
| | - B-C Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, China
| |
Collapse
|
7
|
Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, Kalavagunta PK, Liao J, Jin L, Shang J, Li J. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. MICROBIOME 2019; 7:9. [PMID: 30674356 PMCID: PMC6345003 DOI: 10.1186/s40168-019-0628-3] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/16/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Bile salt hydrolase plays an important role in bile acid-mediated signaling pathways, which regulate lipid absorption, glucose metabolism, and energy homeostasis. Several reports suggest that changes in the composition of bile acids are found in many diseases caused by dysbacteriosis. RESULTS Here, we present the taxonomic identification of bile salt hydrolase (BSH) in human microbiota and elucidate the abundance and activity differences of various bacterial BSH among 11 different populations from six continents. For the first time, we revealed that bile salt hydrolase protein sequences (BSHs) are distributed in 591 intestinal bacterial strains within 117 genera in human microbiota, and 27.52% of these bacterial strains containing BSH paralogs. Significant variations are observed in BSH distribution patterns among different populations. Based on phylogenetic analysis, we reclassified these BSHs into eight phylotypes and investigated the abundance patterns of these phylotypes among different populations. From the inspection of enzyme activity among different BSH phylotypes, BSH-T3 showed the highest enzyme activity and is only found in Lactobaclillus. The phylotypes of BSH-T5 and BSH-T6 mainly from Bacteroides with high percentage of paralogs exhibit different enzyme activity and deconjugation activity. Furthermore, we found that there were significant differences between healthy individuals and patients with atherosclerosis and diabetes in some phylotypes of BSHs though the correlations were pleiotropic. CONCLUSION This study revealed the taxonomic and abundance profiling of BSH in human gut microbiome and provided a phylogenetic-based system to assess BSHs activity by classifying the target sequence into specific phylotype. Furthermore, the present work disclosed the variation patterns of BSHs among different populations of geographical regions and health/disease cohorts, which is essential to understand the role of BSH in the development and progression of related diseases.
Collapse
Affiliation(s)
- Ziwei Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Yuanyuan Cai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Xue Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Xiaoxuan Lin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Yingyun Cui
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | | | - Jun Liao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Jing Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
8
|
Öztürk M, Aydin Y, Kiliçsaymaz Z, Önal C, Ba N. Molecular Cloning, Characterization, and Comparison of Four Bile Salt Hydrolase-Related Enzymes from Lactobacillus plantarum GD2 of Human Origin. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1507911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mehmet Öztürk
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| | - Yasin Aydin
- Department of Biology, Hitit University, Çorum, Turkey
| | - Zekiye Kiliçsaymaz
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| | - Cansu Önal
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| | - Ndeye Ba
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| |
Collapse
|
9
|
Dong Z, Lee BH. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development. Protein Sci 2018; 27:1742-1754. [PMID: 30098054 DOI: 10.1002/pro.3484] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/18/2023]
Abstract
The worldwide trend of limiting the use of antibiotic growth promoters (AGPs) in animal production creates challenges for the animal feed industry, thus necessitating the development of effective non-antibiotic alternatives to improve animal performance. Increasing evidence has shown that the growth-promoting effect of AGPs is highly correlated with the reduced activity of bile salt hydrolase (BSH, EC 3.5.1.24), an intestinal bacteria-producing enzyme that has a negative impact on host fat digestion and energy harvest. Therefore, BSH inhibitors may become novel, attractive alternatives to AGPs. Detailed knowledge of BSH substrate preferences and the wealth of structural data on BSHs provide a solid foundation for rationally tailored BSH inhibitor design. This review focuses on the relationship between structure and function of BSHs based on the crystal structure, kinetic data, molecular docking and comparative structural analyses. The molecular basis for BSH substrate recognition is also discussed. Finally, recent advances and future prospectives in the development of potent, safe, and cost-effective BSH inhibitors are described.
Collapse
Affiliation(s)
- Zixing Dong
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Byong H Lee
- Department of Food Science and Biotechnology, Faculty of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.,Department of Microbiology/Immunology, McGill University, Montreal, Quebec, Canada, H3A 2B4
| |
Collapse
|
10
|
Ba NM, Öztürk M. Molecular Cloning and Characterization of Bile Salt Hydrolase fromLactobacillus gasseriATCC 33323 Strain. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1443822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Mehmet Öztürk
- Department of Biology, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
11
|
Maitan-Alfenas GP, Casarotti SN. Enzymes and Dairy Products. MICROBIAL CULTURES AND ENZYMES IN DAIRY TECHNOLOGY 2018. [DOI: 10.4018/978-1-5225-5363-2.ch001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of enzymes in food production, including dairy products, is below expected due the high costs associated with their production and purification. Microbial enzymes have great potential for industrial applications since they can be produced via large-scale fermentation and they are easily expressed by cloning in well-known cultivated microorganisms. The combination of different procedures such as over-expression techniques and the use of low costs induction sources has resulted in the production of enzymes to be used in high added-value dairy products. The addition of glucose oxidase to probiotic yogurts has been indicated as an alternative to the maintenance of probiotic functionality. Bile salt hydrolase contributes to prevention of hypercholesterolemia which is interesting to produce new functional dairy products. This chapter discusses enzyme sources and their relevance in dairy products, the production of enzymes using cloning and super-expression techniques, as well as enzymes related to functional dairy products.
Collapse
|
12
|
Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2017; 36:682-690. [PMID: 29248683 DOI: 10.1016/j.biotechadv.2017.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.
Collapse
Affiliation(s)
- Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
13
|
Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Anim Health Res Rev 2017; 17:148-158. [PMID: 28155801 DOI: 10.1017/s1466252316000153] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To effectively mitigate antimicrobial resistance in the agricultural ecosystem, there is an increasing pressure to reduce and eliminate the use of in-feed antibiotics for growth promotion and disease prevention in food animals. However, limiting antibiotic use could compromise animal production efficiency and health. Thus, there is an urgent need to develop effective alternatives to antibiotic growth promoters (AGPs). Increasing evidence has shown that the growth-promoting effect of AGPs was highly correlated with the reduced activity of bile salt hydrolase (BSH), an intestinal bacterial enzyme that has a negative impact on host fat digestion and energy harvest; consistent with this finding, the population of Lactobacillus species, the major intestinal BSH-producer, was significantly reduced in response to AGP use. Thus, BSH is a key mechanistic microbiome target for developing novel alternatives to AGPs. Despite recent significant progress in the characterization of diverse BSH enzymes, research on BSH is still in its infancy. This review is focused on the function of BSH and its significant impacts on host physiology in human beings, laboratory animals and food animals. The gaps in BSH-based translational microbiome research for enhanced animal health are also identified and discussed.
Collapse
|
14
|
Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutr Res Rev 2016; 30:36-49. [PMID: 27995830 DOI: 10.1017/s0954422416000226] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CVD affect a large proportion of the world's population, with dyslipidaemia as the major risk factor. The regular consumption of both probiotic bacteria and yeast has been associated with improvement in the serum lipid profile. Thus, the present review aims to describe and discuss the potential mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotic bacteria and yeast. Regarding the hypocholesterolaemic effect of probiotic bacteria, the potential mechanisms responsible include: deconjugation of bile salts; modulation of lipid metabolism; and decreased absorption of intestinal cholesterol through co-precipitation of intestinal cholesterol with the deconjugated bile salts, incorporation and assimilation of cholesterol in the cell membrane of the probiotics, intestinal conversion of cholesterol in coprostanol, and inhibition of the expression of the intestinal cholesterol transporter Niemann-Pick C1 like 1 (NPC1L1) in the enterocytes. The potential mechanisms responsible for the hypocholesterolaemic effect of probiotic yeasts include: deconjugation of bile salts; co-precipitation of intestinal cholesterol with the deconjugated bile salts; incorporation and assimilation of cholesterol in the cell membrane; and inhibition of hepatic cholesterol synthesis. The regular consumption of probiotic bacteria and yeast, as a non-pharmaceutical approach to help manage cardiovascular risk, holds promise, according to the beneficial hypocholesterolaemic effects described herein. However, the hypocholesterolaemic effects vary according to the strains used, the physiological state of the host, and the type of diet to which the probiotics are added. Further studies are necessary to fill the gaps with regard to the knowledge related to this topic.
Collapse
|
15
|
|
16
|
Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells. Biotechnol Lett 2015; 38:659-65. [DOI: 10.1007/s10529-015-2018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022]
|
17
|
Penicillin V acylase from Pectobacterium atrosepticum exhibits high specific activity and unique kinetics. Int J Biol Macromol 2015; 79:1-7. [PMID: 25931393 DOI: 10.1016/j.ijbiomac.2015.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/18/2023]
Abstract
Penicillin V acylases (PVAs, E.C.3.5.11) belong to the Ntn hydrolase super family of enzymes that catalyze the deacylation of the side chain from phenoxymethyl penicillin (penicillin V). Penicillin acylases find use in the pharmaceutical industry for the production of semi-synthetic antibiotics. PVAs employ the N-terminal cysteine residue as catalytic nucleophile and are structurally and evolutionarily related to bile salt hydrolases (BSHs). Here, we report the cloning and characterization of a PVA enzyme from the Gram-negative plant pathogen, Pectobacterium atrosepticum (PaPVA). The enzyme was cloned and expressed in Escherichia coli attaining a very high yield (250 mg/l) and a comparatively high specific activity (430 IU/mg). The enzyme showed marginally better pH and thermo-stability over PVAs characterized from Gram-positive bacteria. The enzyme also showed enhanced activity in presence of organic solvents and detergents. The enzyme kinetics turned out to be significantly different from that of previously reported PVAs, displaying positive cooperativity and substrate inhibition. The presence of bile salts had a modulating effect on PaPVA activity. Sequence analysis and characterization reveal the distinctive nature of these enzymes and underscore the need to study PVAs from Gram-negative bacteria.
Collapse
|
18
|
Guo CF, Li JY. A combination of Tween 80 with CaCl2 enhances the hypocholesterolemic activity of bile salt hydrolase-active Lactobacillus casei F0422 in rats fed a cholesterol-rich diet. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|