1
|
Gorve DA, Fernandes RA. Oxone-Mediated Regioselective Oxy-iodination of 1-Aryl/Alkyl Butadienes Using TBAI. J Org Chem 2024; 89:12827-12831. [PMID: 39178010 DOI: 10.1021/acs.joc.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A simple, mild, and environmentally benign regioselective oxy-iodination of 1-aryl/alkyl butadienes has been developed. While styrenes have been explored previously, this work on dienes has been highly regioselective and metal-free in oxy-iodination following Markovnikov's rule. The oxy-iodination products were obtained in good to excellent yields using various co-solvents (H2O, MeOH, EtOH, AcOH, etc.). In addition, the halohydrins have been useful building blocks in the synthesis of various functionalized keto iodides and azido alcohols.
Collapse
Affiliation(s)
- Dnyaneshwar A Gorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
2
|
Zhang L, Sun Z, Xu G, Ni Y. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review. Int J Biol Macromol 2024; 270:132238. [PMID: 38729463 DOI: 10.1016/j.ijbiomac.2024.132238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Alcohol dehydrogenases (ADHs) mediated biocatalytic asymmetric reduction of ketones have been widely applied in the synthesis of optically active secondary alcohols with highly reactive hydroxyl groups ligated to the stereogenic carbon and divided into (R)- and (S)-configurations. Stereocomplementary ADHs could be applied in the synthesis of both enantiomers and are increasingly accepted as the "first of choice" in green chemistry due to the high atomic economy, low environmental factor, 100 % theoretical yield, and high environmentally friendliness. Due to the equal importance of complementary alcohols, development of stereocomplementary ADHs draws increasing attention. This review is committed to summarize recent advance in discovery of naturally evolved and tailor-made stereocomplementary ADHs, unveil the molecular mechanism of stereoselective catalysis in views of classification and functional basis, and provide guidance for further engineering the stereoselectivity of ADHs for the industrial biosynthesis of chiral secondary alcohol of industrial relevance.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zewen Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
3
|
Mangunuru HPR, Terrab L, Janganati V, Kalikinidi NR, Tenneti S, Natarajan V, Shada ADR, Naini SR, Gajula P, Lee D, Samankumara LP, Mamunooru M, Jayaraman A, Sahani RL, Yin J, Hewa-Rahinduwage CC, Gangu A, Chen A, Wang Z, Desai B, Yue TY, Wannere CS, Armstrong JD, Donsbach KO, Sirasani G, Gupton BF, Qu B, Senanayake CH. Synthesis of Chiral 1,2-Amino Alcohol-Containing Compounds Utilizing Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Unprotected α-Ketoamines. J Org Chem 2024; 89:6085-6099. [PMID: 38648720 DOI: 10.1021/acs.joc.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Herein, we disclose a facile synthetic strategy to access an important class of drug molecules that contain chiral 1,2-amino alcohol functionality utilizing highly effective ruthenium-catalyzed asymmetric transfer hydrogenation of unprotected α-ketoamines. Recently, the COVID-19 pandemic has caused a crisis of shortage of many important drugs, especially norepinephrine and epinephrine, for the treatment of anaphylaxis and hypotension because of the increased demand. Unfortunately, the existing technologies are not fulfilling the worldwide requirement due to the existing lengthy synthetic protocols that require additional protection and deprotection steps. We identified a facile synthetic protocol via a highly enantioselective one-step process for epinephrine and a two-step process for norepinephrine starting from unprotected α-ketoamines 1b and 1a, respectively. This newly developed enantioselective ruthenium-catalyzed asymmetric transfer hydrogenation was extended to the synthesis of many 1,2-amino alcohol-containing drug molecules such as phenylephrine, denopamine, norbudrine, and levisoprenaline, with enantioselectivities of >99% ee and high isolated yields.
Collapse
Affiliation(s)
- Hari P R Mangunuru
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Leila Terrab
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Venumadhav Janganati
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | | | - Srinivasarao Tenneti
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Vasudevan Natarajan
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Arun D R Shada
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Santhosh Reddy Naini
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Praveen Gajula
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Daniel Lee
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Lalith P Samankumara
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Manasa Mamunooru
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Aravindan Jayaraman
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rajkumar Lalji Sahani
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jinya Yin
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | | | - Aravind Gangu
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Anji Chen
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Zhirui Wang
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Bimbisar Desai
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Tai Y Yue
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Chaitanya S Wannere
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Joseph D Armstrong
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Kai O Donsbach
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Gopal Sirasani
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - B Frank Gupton
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Bo Qu
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| | - Chris H Senanayake
- TCG GreenChem, Inc., 701 Charles Ewing Blvd, Ewing, New Jersey 08628, United States
| |
Collapse
|
4
|
Partipilo M, Whittaker JJ, Pontillo N, Coenradij J, Herrmann A, Guskov A, Slotboom DJ. Biochemical and structural insight into the chemical resistance and cofactor specificity of the formate dehydrogenase from Starkeya novella. FEBS J 2023; 290:4238-4255. [PMID: 37213112 DOI: 10.1111/febs.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD+ ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (FdhSNO ) from the soil bacterium Starkeya novella strictly specific for NAD+ . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of FdhSNO as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+ ) with better catalytic efficiency than NAD+ . The single mutation D221Q enabled the reduction of NADP+ with a catalytic efficiency kCAT /KM of 0.4 s-1 ·mm-1 at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP+ compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP+ . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of FdhSNO may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Jacob J Whittaker
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Nicola Pontillo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | - Jelmer Coenradij
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Andreas Herrmann
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Germany
| | - Albert Guskov
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| |
Collapse
|
5
|
González-Rodríguez J, Albarrán-Velo J, Soengas RG, Lavandera I, Gotor-Fernández V, Rodríguez-Solla H. Synthesis of Optically Active syn- and anti-Chlorohydrins through a Bienzymatic Reductive Cascade. Org Lett 2022; 24:7082-7087. [PMID: 36154101 PMCID: PMC9552227 DOI: 10.1021/acs.orglett.2c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A bienzymatic cascade
has been designed and optimized to obtain
enantiopure chlorohydrins starting from the corresponding 1-aryl-2-chlorobut-2-en-1-ones.
For the synthesis of these α-chloroenones, a two-step sequence
was developed consisting of the allylation of the corresponding aldehyde
with 3-dichloroprop-1-ene, followed by oxidation and further isomerization.
The selective cooperative catalytic system involving ene-reductases
(EREDs) and alcohol dehydrogenases (ADHs) afforded the desired optically
active chlorohydrins under mild reaction conditions in excellent conversions
(up to >99%) and selectivities (up to >99:1 diastereomeric ratio
(dr),
>99% enantiomeric excess (ee)).
Collapse
Affiliation(s)
- Jorge González-Rodríguez
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería s/n, 33006 Oviedo, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería s/n, 33006 Oviedo, Spain
| | - Raquel G Soengas
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería s/n, 33006 Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería s/n, 33006 Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería s/n, 33006 Oviedo, Spain
| | - Humberto Rodríguez-Solla
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
6
|
Jothi S, Vuppu S. Taguchi analysis and asymmetric keto-reduction of acetophenone and its derivatives by soil filamentous fungal isolate: Penicillium rubens VIT SS1. Prep Biochem Biotechnol 2020; 50:1042-1052. [PMID: 32633606 DOI: 10.1080/10826068.2020.1786697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microbial asymmetric reduction of ketone is an efficient tool for the synthesis of chiral alcohols. This research focuses on exploring the soil fungal isolates for their ability toward the keto reduction of acetophenone and its derivatives to their corresponding chiral alcohols using growing cells. Bioreduction of acetophenone, 4-fluoro acetophenone, 4-methyl acetophenone, and 3-hydroxy acetophenone was carried out using different fungal cultures isolated from soil. Among the fungal isolates, Penicillium sp. and Aspergillus sp. showed significant bioconversion with varying enantio-selectivity. However, the Penicillium sp. has shown the maximum ability of bioreduction. The potential isolate was characterized using the internal transcribed spacer (ITS) region and found to be Penicillium rubens VIT SS1 (Genbank accession number: MK063869.1), which showed higher conversion and selectivity > 90%. The biocatalyst production and the reaction conditions were optimized using Taguchi analysis. The process conditions such as pH, temperature, media components, cosolvent, and substrate dosing were evaluated for the bioreduction of 3-hydroxy acetophenone, which is a key chiral intermediate of Phenylephrine and Rivastigmine using P. rubens VIT SS1. This study concludes about the potential of fungal cultures for sustainable synthesis of key chiral intermediates of Phenylephrine and Rivastigmine, similarly many aromatic chiral alcohols in simpler, novel, and cost-effective manner.
Collapse
Affiliation(s)
- Saravanan Jothi
- School of Biosciences and Technology, VIT University, Vellore, India.,R&D, Iosynth Labs Private Limited, Bangalore, India
| | - Suneetha Vuppu
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
7
|
Yin C, Wu W, Hu Y, Tan X, You C, Liu Y, Chen Z, Dong XQ, Zhang X. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Congcong Yin
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Weilong Wu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Yang Hu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Xuefeng Tan
- Department of Chemistry; Southern University of Science and Technology; Shenzhen, Guangdong 518055 People's Republic of China
| | - Cai You
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Yuanhua Liu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Ziyi Chen
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
| | - Xumu Zhang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan, Hubei 430072 People's Republic of China
- Department of Chemistry; Southern University of Science and Technology; Shenzhen, Guangdong 518055 People's Republic of China
| |
Collapse
|
8
|
Tsunekawa R, Hanaya K, Higashibayashi S, Shoji M, Sugai T. Chemoenzymatic approaches to the synthesis of the (1 S ,2 R )-isomer of benzyl 2-hydroxycyclohexanecarboxylate. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zheng YG, Yin HH, Yu DF, Chen X, Tang XL, Zhang XJ, Xue YP, Wang YJ, Liu ZQ. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl Microbiol Biotechnol 2017; 101:987-1001. [PMID: 28074225 DOI: 10.1007/s00253-016-8083-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dao-Fu Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
10
|
Borowiecki P, Paprocki D, Dranka M. First chemoenzymatic stereodivergent synthesis of both enantiomers of promethazine and ethopropazine. Beilstein J Org Chem 2014; 10:3038-55. [PMID: 25670974 PMCID: PMC4311712 DOI: 10.3762/bjoc.10.322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/01/2014] [Indexed: 12/17/2022] Open
Abstract
Enantioenriched promethazine and ethopropazine were synthesized through a simple and straightforward four-step chemoenzymatic route. The central chiral building block, 1-(10H-phenothiazin-10-yl)propan-2-ol, was obtained via a lipase-mediated kinetic resolution protocol, which furnished both enantiomeric forms, with superb enantioselectivity (up to E = 844), from the racemate. Novozym 435 and Lipozyme TL IM have been found as ideal biocatalysts for preparation of highly enantioenriched phenothiazolic alcohols (up to >99% ee), which absolute configurations were assigned by Mosher's methodology and unambiguously confirmed by XRD analysis. Thus obtained key-intermediates were further transformed into bromide derivatives by means of PBr3, and subsequently reacted with appropriate amine providing desired pharmacologically valuable (R)- and (S)-stereoisomers of title drugs in an ee range of 84-98%, respectively. The modular amination procedure is based on a solvent-dependent stereodivergent transformation of the bromo derivative, which conducted in toluene gives mainly the product of single inversion, whereas carried out in methanol it provides exclusively the product of net retention. Enantiomeric excess of optically active promethazine and ethopropazine were established by HPLC measurements with chiral columns.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Daniel Paprocki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maciej Dranka
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
11
|
Highly enantioselective production of (R)-halohydrins with whole cells of Rhodotorula rubra KCh 82 culture. Int J Mol Sci 2014; 15:22392-404. [PMID: 25486054 PMCID: PMC4284715 DOI: 10.3390/ijms151222392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R)-alcohols according to Prelog's rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R)-halohydrins in high yields. The use of this biocatalyst yielded (R)-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee) = 97%) and its derivatives: 4'-Bromo- (ee = 99%); 4'-Chloro- (ee > 99%); 4'-Methoxy- (ee = 96%); 3'-Methoxy- (ee = 93%); 2'-Methoxy- (ee = 98%). There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses.
Collapse
|
12
|
Janeczko T, Bąkowski W, Walczak E, Robak M, Dmochowska-Gładysz J, Kostrzewa-Susłow E. Biotransformation of acetophenone and its halogen derivatives by Yarrowia lipolytica strains. ANN MICROBIOL 2014; 65:1097-1107. [PMID: 26005401 PMCID: PMC4438219 DOI: 10.1007/s13213-014-0955-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022] Open
Abstract
The ability of 16 strains of Yarrowia lipolytica to biotransform acetophenone and its derivatives has been studied. Thirteen of these strains were derived from a wild-type strain Y. lipolytica A-101; six had the invertase gene (SUC2) from Saccharomyces cerevisiae integrated into their genome, as well as the damaged or undamaged gene encoding orotidine-5'-phosphate decarboxylase (URA3), three had integrated the damaged URA3 gene into their genome and three were UV acetate-negative mutants, not able to growth on acetate as the sole carbon source. The other tested strains included two wild strains, A-101 and PMR-1, and an adenine auxotroph ATCC 32-338A. All strains were capable of reducing acetophenone to the R-alcohol in high enantiomeric excess (80-89 %). In all of the cultures tested, reversibility of the reduction was observed, which led to an increase in the enantiomeric excess. nantioselective reduction of the acetophenone halogen derivatives revealed that the nature and location of the halogen atom had a significant influence on the enantioselectivity of the reduction. In the culture of ATCC 32-338A, after a 3-day biotransformation of 2,4'-dibromoacetophenone the enantiopure R-alcohol was obtained at a rate of 100 % of substrate conversion. In conclusion, using these invertase-containing strains or uracyl auxotrophs provided no additional benefit in terms of biotransformation capacity over the parental strain.
Collapse
Affiliation(s)
- Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Wojciech Bąkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Walczak
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Department of Medicine, The Witelon University of Applied Sciences, Sejmowa 5A, 59-220 Legnica, Poland
| | - Małgorzata Robak
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jadwiga Dmochowska-Gładysz
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Department of Cosmetology, Wrocław College of Physiotherapy, Kościuszki 4, 50-038 Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|