1
|
Singh B, Jana AK. Agri-residues and agro-industrial waste substrates bioconversion by fungal cultures to biocatalyst lipase for green chemistry: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119219. [PMID: 37852078 DOI: 10.1016/j.jenvman.2023.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Huge amounts of agri-residues generated from food crops and processing are discarded in landfills, causing environmental problems. There is an urgent need to manage them with a green technological approach. Agri-residues are rich in nutrients such as proteins, lipids, sugars, minerals etc., and provide an opportunity for bioconversion into value-added products. Considering the importance of lipase as a biocatalyst for various industrial applications and its growing need for economic production, a detailed review of bioconversion of agri-residues and agro-industrial substrate for the production of lipase from fungal species from a technological perspective has been reported for the first time. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram was used for the identification and selection of articles from ScienceDirect, Google Scholar, and Scopus databases from 2010 to 2023 (July), and 108 peer-reviewed journal articles were included based on the scope of the study. The composition of agri-residues/agro-industrial wastes, fungal species, lipase production, industrial/green chemistry applications, and the economic impact of using agri-residues on lipase costs have been discussed. Bioconversion procedure, process developments, and technology gaps required to be addressed before commercialization have also been discussed. This process expects to decrease the environmental pollution from wastes, and low-cost lipase can help in the growth of the bioeconomy.
Collapse
Affiliation(s)
- Bhim Singh
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, 144011, Punjab, India
| | - Asim Kumar Jana
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, 144011, Punjab, India.
| |
Collapse
|
2
|
Hu X, Liu S, Li E. Microbial community succession and its correlation with the dynamics of flavor compound profiles in naturally fermented stinky sufu. Food Chem 2023; 427:136742. [PMID: 37393638 DOI: 10.1016/j.foodchem.2023.136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Wuhan stinky sufu is a traditional fermented soybean product with a short ripening period and unique flavor. The aim of this study was to explore the characteristic flavor compounds and core functional microbiota of naturally fermented Wuhan stinky sufu. The results indicated that 11 volatile compounds including guaiacol, 2-pentylfuran, dimethyl trisulfide, dimethyl disulfide, acetoin, 1-octen-3-ol, (2E)-2-nonenal, indole, propyl 2-methylbutyrate, ethyl 4-methylvalerate, nonanal were characteristic aroma compounds, and 6 free amino acids (Ser, Lys, Arg, Glu, Met and Pro) were identified as taste-contributing compounds. 4 fungal genera (Kodamaea, unclassified_Dipodascaceae, Geotrichum, Trichosporon), and 9 bacterial genera (Lysinibacillus, Enterococcus, Acidipropionibacterium, Bifidobacterium, Corynebacterium, Lactococcus, Pseudomonas, Enterobacter, and Acinetobacter) were identified as the core functional microbiota with positive effects on the production of flavor compounds. These findings would enhance the understanding of core flavor-producing microorganisms in naturally fermented soybean products and potentially provide guidance for enhancing the quality of sufu.
Collapse
Affiliation(s)
- Xuefen Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| | - Erhu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
3
|
Kamilari E, Stanton C, Reen FJ, Ross RP. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods 2023; 12:foods12061124. [PMID: 36981051 PMCID: PMC10048088 DOI: 10.3390/foods12061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Fungi make a fundamental contribution to several biotechnological processes, including brewing, winemaking, and the production of enzymes, organic acids, alcohols, antibiotics, and pharmaceuticals. The present review explores the biotechnological importance of the filamentous yeast-like fungus Geotrichum candidum, a ubiquitous species known for its use as a starter in the dairy industry. To uncover G. candidum's biotechnological role, we performed a search for related work through the scientific indexing internet services, Web of Science and Google Scholar. The following query was used: Geotrichum candidum, producing about 6500 scientific papers from 2017 to 2022. From these, approximately 150 that were associated with industrial applications of G. candidum were selected. Our analysis revealed that apart from its role as a starter in the dairy and brewing industries, this species has been administered as a probiotic nutritional supplement in fish, indicating improvements in developmental and immunological parameters. Strains of this species produce a plethora of biotechnologically important enzymes, including cellulases, β-glucanases, xylanases, lipases, proteases, and α-amylases. Moreover, strains that produce antimicrobial compounds and that are capable of bioremediation were identified. The findings of the present review demonstrate the importance of G. candidum for agrifood- and bio-industries and provide further insights into its potential future biotechnological roles.
Collapse
Affiliation(s)
- Eleni Kamilari
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, T12 YT20 Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
4
|
Supplementation of Bile Acids and Lipase in Broiler Diets for Better Nutrient Utilization and Performance: Potential Effects and Future Implications – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Bile acids are used for better emulsification, digestion and absorption of dietary fat in chicken, especially in early life. Similarly, exogenous lipases have also been used for the improvement of physiological limitation of the chicken digestive system. Owing to potential of both bile acids and lipases, their use has been increased in recent years, for better emulsification of dietary fat and improvement of growth performance in broilers. In the past, pancreatic lipases were used for supplementation, but recently, microbial lipase is getting attention in poultry industry as a hydrolysis catalyst. Bile acids strengthen the defence mechanism of body against bacterial endotoxins and also play a key role in lipid regulation and sugar metabolism as signaling molecules. It has been demonstrated that bile acids and lipases may improve feed efficiency by enhancing digestive enzyme activity and ultimately leading to better fat digestion and absorption. Wide supplemental range of bile acids (0.004% to 0.25%) and lipases (0.01% to 0.1%) has been used in broiler diets for improvement of fat digestibility and their performance. Combinations of different bile acids have shown more potential to improve feed efficiency (by 7.14%) even at low (0.008%) levels as compared to any individual bile acid. Lipases at a lower level of 0.03% have exhibited more promising potential to improve fat digestibility and feed efficiency. However, contradicting results have been published in literature, which needs further investigations to elucidate various nutritional aspects of bile acids and lipase supplementation in broiler diet. This review focuses on providing insight on the mechanism of action and potential application of bile acids and lipases in broiler diets. Moreover, future implications of these additives in poultry nutrition for enhancing nutrient utilization and absorption are also discussed.
Collapse
|
5
|
Tacin MV, Costa-Silva TA, de Paula AV, Palomo JM, Santos-Ebinuma VDC. Microbial lipase: a new approach for a heterogeneous biocatalyst. Prep Biochem Biotechnol 2020; 51:749-760. [PMID: 33315537 DOI: 10.1080/10826068.2020.1855442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipases are enzymes employed in several industrial process and their applicability can be increased if these biocatalysts are in the immobilize form. The objective of this work was to study the immobilization of lipase produced by submerged cultivation of Aspergillus sp. by hydrophobic interaction, evaluating its stability and reuse capacity. The immobilization process on octyl-sepharose (C8) and octadecyl-sepabeads (C18) carriers was possible after the removal of oil excess presented in the fermented broth. The results showed that the enzyme was isolated and concentrated in octyl-sepharose with 22% of the initial activity. To increase the amount of enzyme adsorbed on the carrier, 4 immobilization cycles were performed in a row, on the same carrier, with a final immobilization yield of 151.32% and an increase in the specific activity of 136%. The activity test with immobilized lipase showed that the immobilized enzyme maintained 75% of the initial activity after 20 cycles.
Collapse
Affiliation(s)
- Mariana Vendrasco Tacin
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Cantoblanco, Spain
| | - Tales A Costa-Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ariela Veloso de Paula
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jose M Palomo
- Department of Biocatalysis, Institute of Catalysis (ICP-CSIC), Cantoblanco, Spain
| | - Valéria de Carvalho Santos-Ebinuma
- Department of Engineering Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
6
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
7
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
8
|
Ferreira MM, de Oliveira GF, Basso RC, Mendes AA, Hirata DB. Optimization of free fatty acid production by enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum candidum. Bioprocess Biosyst Eng 2019; 42:1647-1659. [DOI: 10.1007/s00449-019-02161-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022]
|
9
|
Luo X, Shi H, Wu R, Wu J, Pi Y, Zheng Y, Yue X. Δ12 fatty acid desaturase gene from Geotrichum candidum in cheese: molecular cloning and functional characterization. FEBS Open Bio 2019; 9:18-25. [PMID: 30652070 PMCID: PMC6325598 DOI: 10.1002/2211-5463.12553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 11/06/2018] [Indexed: 11/07/2022] Open
Abstract
Soft cheese with white rind lacks essential fatty acids (EFAs), and as a result its long-term consumption may lead to various kinds of cardiovascular and cerebrovascular diseases, such as hyperlipidemia, hypertension, and atherosclerosis. Geotrichum candidum is a dimorphic yeast that plays an important role in the ripening of mold cheese. A gene coding for Δ12 fatty acid desaturase, a critical bifunctional enzyme desaturating oleic acid (OA) and linoleic acid (LA) to produce LA and α-linolenic acid (ALA), respectively, was isolated from G. candidum, and then cloned and heterologously expressed in Saccharomyces cerevisiae. This gene, named GcFADS12, had an open reading frame of 1257 bp and codes for a protein of 419 amino acids with a predicted molecular mass of 47.5 kDa. Characterization showed that GcFADS12 had the ability to convert OA to LA and LA to ALA, and the conversion rates for OA and LA were 20.40 ± 0.66% and 6.40 ± 0.57%, respectively. We also found that the protein product of GcFADS12 catalyzes the conversion of the intermediate product (LA) to ALA by addition of OA as the sole substrate. The catalytic activity of GcFADS12 on OA and LA was unaffected by fatty acid concentrations. Kinetic analysis revealed that GcFADS12 had stronger affinity for the OA than for the LA substrate. This study offers a solid basis for improving the production of EFAs by G. candidum in cheese.
Collapse
Affiliation(s)
- Xue Luo
- College of Food ScienceShenyang Agricultural UniversityChina
| | - Haisu Shi
- College of Food ScienceShenyang Agricultural UniversityChina
| | - Rina Wu
- College of Food ScienceShenyang Agricultural UniversityChina
| | - Junrui Wu
- College of Food ScienceShenyang Agricultural UniversityChina
| | - Yuzhen Pi
- College of Food ScienceShenyang Agricultural UniversityChina
| | - Yan Zheng
- College of Food ScienceShenyang Agricultural UniversityChina
| | - Xiqing Yue
- College of Food ScienceShenyang Agricultural UniversityChina
| |
Collapse
|
10
|
Ferreira MM, Santiago FL, Silva NA, Luiz JH, Fernandéz-Lafuente R, Mendes AA, Hirata DB. Different strategies to immobilize lipase from Geotrichum candidum : Kinetic and thermodynamic studies. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Immobilization Effects on the Catalytic Properties of Two Fusarium Verticillioides Lipases: Stability, Hydrolysis, Transesterification and Enantioselectivity Improvement. Catalysts 2018. [DOI: 10.3390/catal8020084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Protein Expr Purif 2018; 145:64-70. [PMID: 29326063 DOI: 10.1016/j.pep.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/22/2022]
Abstract
A highly-active tyrosinase (H subunit) isoform has been purified from a commercial crude extract of Agaricus bisporus by a specific, two step-hydrophobic chromatography cascade process based on the differential adsorption of the proteins from the extract to hydrophobic-functionalized supports. At first, commercial, crude tyrosinase from Agaricus bisporus (AbTyr) dissolved in aqueous media was added to octadecyl-Sepabeads matrix at 25 °C. Under these conditions, the support specifically adsorbed a protein with a molecular weight of 47 kDa which showed no tyrosinase activity. The known H subunit of tyrosinase from Agaricus bisporus (45 kDa, H-AbTyr) and another protein of 50 kDa were present in the supernatant. Sodium phosphate buffer was added to adjust the ionic strength of the solution up to 100 mM and Triton X-100 was added (final concentration of 0.07% v/v) to control the hydrophobicity effect for both proteins. This solution was offered again to fresh octadecyl-Sepabeads support, immobilizing selectively the H-AbTyr and leaving exclusively the 50 kDa protein as a pure sample in the supernatant. This tyrosinase isoform of 50 kDa was almost 4-fold more active than the known H-TyrAb, with a specific tyrosinase activity of more than 38,000 U/mg.
Collapse
|
13
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
14
|
Hirata D, Fernández-Lafuente R, Basso1 R, Mendes A, Tavano O, Badino A, Oliveira L, Esperança M, Moreira N, Castro P. High Lipase Production from Geotrichum candidum in Reduced Time using Cottonseed Oil: Optimization, Easy Purification and Specificity Characterization. ACTA ACUST UNITED AC 2017. [DOI: 10.15377/2409-983x.2016.03.02.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Grondin E, Shum Cheong Sing A, James S, Nueno-Palop C, François JM, Petit T. Flavour production by Saprochaete and Geotrichum yeasts and their close relatives. Food Chem 2017; 237:677-684. [PMID: 28764052 DOI: 10.1016/j.foodchem.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 04/06/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
Abstract
In this study, a total of 30 yeast strains belonging to the genera Dipodascus, Galactomyces, Geotrichum, Magnusiomyces and Saprochaete were investigated for volatile organic compound production using HS-SPME-GC/MS analysis. The resulting flavour profiles, including 36 esters and 6 alcohols compounds, were statistically evaluated by cluster and PCA analysis. Two main groups of strains were extracted from this analysis, namely a group with a low ability to produce flavour and a group producing mainly alcohols. Two other minor groups of strains including Saprochaete suaveolens, Geotrichum marinum and Saprochaete gigas were diverging significantly from the main groups precisely because they showed a good ability to produce a large diversity of esters. In particular, we found that the Saprochaete genus (and their closed relatives) was characterized by a high production of unsaturated esters arising from partial catabolism of branched chain amino-acids. These esters were produced by eight phylogenetically related strains of Saprochaete genus.
Collapse
Affiliation(s)
- Eric Grondin
- Université de La Réunion, Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, LCSNSA, EA 2212, 15 Avenue René Cassin, 97490 Sainte Clotilde, La Réunion, France; Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de la Réunion, France
| | - Alain Shum Cheong Sing
- Université de La Réunion, Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, LCSNSA, EA 2212, 15 Avenue René Cassin, 97490 Sainte Clotilde, La Réunion, France
| | - Steve James
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Carmen Nueno-Palop
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Jean Marie François
- LISBP, Université Fédérale de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Thomas Petit
- Université de La Réunion, Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, LCSNSA, EA 2212, 15 Avenue René Cassin, 97490 Sainte Clotilde, La Réunion, France; Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de la Réunion, France; UMR Qualisud - Démarche intégrée pour l'obtention d'aliments de qualité, Université de La Réunion, IUT - Saint-Pierre, La Réunion, France.
| |
Collapse
|
16
|
Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism. Bioprocess Biosyst Eng 2016; 39:1933-1943. [DOI: 10.1007/s00449-016-1667-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/02/2016] [Indexed: 01/02/2023]
|
17
|
Characterization of Crude and Partially Purified Lipase fromGeotrichum candidumObtained with Different Nitrogen Sources. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2875-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Ramos EZ, Júnior RHM, de Castro PF, Tardioli PW, Mendes AA, Fernandéz-Lafuente R, Hirata DB. Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Quintana PG, Canet A, Marciello M, Valero F, Palomo JM, Baldessari A. Enzyme-catalyzed preparation of chenodeoxycholic esters by an immobilized heterologous Rhizopus oryzae lipase. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Evaluation of partial purification and immobilization of lipase from Geotrichum candidum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Maldonado RR, Aguiar-Oliveira E, Pozza EL, Costa FAA, Filho FM, Rodrigues MI. Production of Lipase from Geotrichum candidum Using Corn Steep Liquor in Different Bioreactors. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2552-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Fleuri LF, Novelli PK, Delgado CHO, Pivetta MR, Pereira MS, Arcuri MDLC, Capoville BL. Biochemical characterisation and application of lipases produced byAspergillussp. on solid-state fermentation using three substrates. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luciana F. Fleuri
- São Paulo State University “Júlio de Mesquita Filho” - UNESP; IBB/DQB; District of Rubião Jr., s/n CEP 18618-970 Botucatu SP Brasil
| | - Paula K. Novelli
- São Paulo State University “Júlio de Mesquita Filho” - UNESP; IBB/DQB; District of Rubião Jr., s/n CEP 18618-970 Botucatu SP Brasil
| | - Clarissa H. O. Delgado
- São Paulo State University “Júlio de Mesquita Filho” - UNESP; IBB/DQB; District of Rubião Jr., s/n CEP 18618-970 Botucatu SP Brasil
| | - Mayara R. Pivetta
- São Paulo State University “Júlio de Mesquita Filho” - UNESP; IBB/DQB; District of Rubião Jr., s/n CEP 18618-970 Botucatu SP Brasil
| | - Milene S. Pereira
- São Paulo State University “Júlio de Mesquita Filho” - UNESP; IBB/DQB; District of Rubião Jr., s/n CEP 18618-970 Botucatu SP Brasil
| | - Mariana de L. C. Arcuri
- São Paulo State University “Júlio de Mesquita Filho” - UNESP; IBB/DQB; District of Rubião Jr., s/n CEP 18618-970 Botucatu SP Brasil
| | - Bruna L. Capoville
- São Paulo State University “Júlio de Mesquita Filho” - UNESP; IBB/DQB; District of Rubião Jr., s/n CEP 18618-970 Botucatu SP Brasil
| |
Collapse
|