1
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
2
|
Gładkowski W, Ortlieb S, Niezgoda N, Chojnacka A, Fortuna P, Wiercik P. Novel Lipid-Based Carriers of Provitamin D 3: Synthesis and Spectroscopic Characterization of Acylglycerol Conjugated with 7-Dehydrocholesterol Residue and Its Glycerophospholipid Analogue. Molecules 2024; 29:5805. [PMID: 39683962 DOI: 10.3390/molecules29235805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this research was to design and synthesize new lipid conjugates of 7-DHC that could serve as a new storage form of esterified provitamin D3, increasing the reservoir of this biomolecule in the epidermis and enabling controlled production of vitamin D3 even during periods of sunlight deficiency. Acylglycerol and glycerophospholipid containing succinate-linked provitamin D3 at the sn-2 position of the glycerol backbone were synthesized from dihydroxyacetone (DHA) and sn-glycerophosphocholine (GPC), respectively. The three-step synthesis of 1,3-dipalmitoyl-2-(7-dehydrocholesterylsuccinoyl)glycerol involved the esterification of DHA with palmitic acid, reduction of the carbonyl group, and conjugation of the resulting 1,3-dipalmitoylglycerol with 7-dehydrocholesterol hemisuccinate (7-DHC HS). The use of NaBH3CN as a reducing agent was crucial to avoid acyl migration and achieve the final product with 100% regioisomeric purity. For the preparation of 1-palmitoyl-2-(7-dehydrocholesterylsuccinoyl)-sn-glycero-3-phosphocholine, a two-step process was applied, involving the esterification of GPC at the sn-1 position with palmitic acid, followed by the conjugation of 1-palmitoyl-sn-glycero-3-phosphocholine with 7-DHC HS. Alongside the main product, a small amount of its regioisomer with provitamin D3 linked at the sn-1 position and palmitic acid at the sn-2 position was detected, indicating acyl migration from the sn-1 to the sn-2 position in the intermediate 1-palmitoyl-sn-glycerophosphocholine. The synthesized novel lipids were fully characterized using spectroscopic methods. They can find applications as novel lipid-based prodrugs as additives to sunscreen creams.
Collapse
Affiliation(s)
- Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Susanna Ortlieb
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstraße 73, 6850 Dornbirn, Austria
| | - Natalia Niezgoda
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Anna Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Paulina Fortuna
- Omics Research Center, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Paweł Wiercik
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24, 50-363 Wrocław, Poland
| |
Collapse
|
3
|
The enzymatic modification of phospholipids improves their surface-active properties and the formation of nanoemulsions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Abstract
In recent years, structured phospholipids (SPLs), which are modified phospholipids (PLs), have attracted more attention due to their great potential for application in the field of pharmacy, food, cosmetics, and health. SPLs not only possess enhanced chemical, physical and nutritional properties, but also present superior bioavailability in comparison with other lipid forms, such as triacylglycerols, which make SPLs become more competitive carriers to increase the absorption of the specific fatty acids in the body. Compared with chemical-mediated SPLs, the process of enzyme-mediated SPLs has the advantages of high product variety, high substrate selectivity, and mild operation conditions. Both lipases and phospholipases can be used in the enzymatic production of SPLs, and the main reaction type contains esterification, acidolysis, and transesterification. During the preparation, reaction medium, acyl migration, water content/activity, substrates and enzymes, and some other parameters have significant effects on the production and purity of the desired PLs products. In this paper, the progress in enzymatic modification of PLs over the last 20 years is reviewed. Reaction types and characteristic parameters are summarized in detail and the parameters affecting acyl migration are first discussed to give the inspiration to optimize the enzyme-mediated SPLs preparation. To expand the application of enzyme-mediated SPLs in the future, the prospect of further study on SPLs is also proposed at the end of the paper.
Collapse
|
5
|
Verdasco-Martín CM, Corchado-Lopo C, Fernández-Lafuente R, Otero C. Prolongation of secondary drying step of phospholipid lyophilization greatly improves acidolysis reactions catalyzed by immobilized lecitase ultra. Enzyme Microb Technol 2020; 132:109388. [PMID: 31731951 DOI: 10.1016/j.enzmictec.2019.109388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/28/2022]
Abstract
Conjugated linolenic acid (CLA) has important health effects, and their phospholipids forms (PL) are advantageous vehicles of this bioactive agent. Acidolysis of soybean phosphatidylcholine (PC) with conjugated linolenic acid (CLA) catalyzed by Lecitase® Ultra immobilized on Duolite A658 was studied. This reaction is typically limited by hydrolysis, producing 60-90 % of lyso- and glycero-PC and yielding low the process efficiency. Drying the amphiphilic PC material was found the key factor for maximal diacylglycerol phosphatidylcholines (PC) production and different drying approaches were studied to maximize the formation of PC rich in CLA in a solvent free process. PC lyophilization for 24 h getting dry solid appearance (PC; 783 ± 11 mg water/Kg PC) or other standard protocols to reduce water content/activity of reaction medium, did not improve the reaction performance. However, adding 4 extra days to the second step of lyophilization at high vacuum (1 Pa) and moderate temperature (20 °C), followed by further PC dehydration with molecular sieves, drastically reduced the hydrolysis process by achieving a extensive PC dehydration (279 ± 4 mg water/Kg PC), obtaining for the first time >99% molar yield of diacyl-PC product. After 24 h of reaction, a diacyl-PC product with 72.3% CLA content was obtained. PC molecules containing two CLA were the major species formed.
Collapse
Affiliation(s)
- Carlos M Verdasco-Martín
- Department of Biocatalysis, Institute of Catalysis and Petroleochemistry, CSIC, C/ Marie Curie 2 L10, Madrid 28049, Spain
| | - Carlos Corchado-Lopo
- Department of Biocatalysis, Institute of Catalysis and Petroleochemistry, CSIC, C/ Marie Curie 2 L10, Madrid 28049, Spain
| | - Roberto Fernández-Lafuente
- Department of Biocatalysis, Institute of Catalysis and Petroleochemistry, CSIC, C/ Marie Curie 2 L10, Madrid 28049, Spain
| | - Cristina Otero
- Department of Biocatalysis, Institute of Catalysis and Petroleochemistry, CSIC, C/ Marie Curie 2 L10, Madrid 28049, Spain.
| |
Collapse
|
6
|
Lipase Catalyzed Acidolysis for Efficient Synthesis of Phospholipids Enriched with Isomerically Pure cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid. Catalysts 2019. [DOI: 10.3390/catal9121012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The production of phospholipid (PL) conjugates with biologically active compounds is nowadays an extensively employed approach. This type of phospholipids conjugates could improve bioavailability of many poorly absorbed active compounds such as isomers of conjugated linoleic acid (CLA), which exhibit versatile biological effects. The studies were carried out to elaborate an efficient enzymatic method for the synthesis of phospholipids with pure (>90%) cis-9,trans-11 and trans-10,cis-12 CLA isomers. For this purpose, three commercially available immobilized lipases were examined in respect to specificity towards CLA isomers in acidolysis of egg-yolk phosphatidylcholine (PC). Different incorporation rates were observed for the individual CLA isomers. Under optimal conditions: PC/CLA molar ratio 1:6; Rhizomucor miehei lipase loading 24% wt. based on substrates; heptane; DMF, 5% (v/v); water activity (aw), 0.11; 45 °C; magnetic stirring, 300 rpm; 48 h., effective incorporation (EINC) of CLA isomers into PC reached ca. 50%. The EINC of CLA isomers was elevated for 25–30% only by adding a water mimic (DMF) and reducing aw to 0.11 comparing to the reaction system performed at aw = 0.23. The developed method of phosphatidylcholine acidolysis is the first described in the literature dealing with isometrically pure CLA and allow to obtain very high effective incorporation.
Collapse
|
7
|
Ang X, Chen H, Xiang JQ, Wei F, Quek SY. Preparation and functionality of lipase-catalysed structured phospholipid – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Niezgoda N, Gliszczyńska A, Kempińska K, Wietrzyk J, Wawrzeńczyk C. Synthesis and evaluation of cytotoxic activity of conjugated linoleic acid derivatives (esters, alcohols, and their acetates) toward cancer cell lines. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Natalia Niezgoda
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Anna Gliszczyńska
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Katarzyna Kempińska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław Poland
| | - Joanna Wietrzyk
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław Poland
| | - Czesław Wawrzeńczyk
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| |
Collapse
|
9
|
|
10
|
Niezgoda N, Gliszczyńska A, Gładkowski W, Chojnacka A, Kiełbowicz G, Wawrzeńczyk C. Production of concentrates of CLA obtained from sunflower and safflower and their application to the lipase‐catalyzed acidolysis of egg yolk phosphatidylcholine. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Natalia Niezgoda
- Department of ChemistryWroclaw University of Environmental and Life SciencesWrocławPoland
| | - Anna Gliszczyńska
- Department of ChemistryWroclaw University of Environmental and Life SciencesWrocławPoland
| | - Witold Gładkowski
- Department of ChemistryWroclaw University of Environmental and Life SciencesWrocławPoland
| | - Anna Chojnacka
- Department of ChemistryWroclaw University of Environmental and Life SciencesWrocławPoland
| | - Grzegorz Kiełbowicz
- Department of ChemistryWroclaw University of Environmental and Life SciencesWrocławPoland
| | - Czesław Wawrzeńczyk
- Department of ChemistryWroclaw University of Environmental and Life SciencesWrocławPoland
| |
Collapse
|