1
|
Wu Y, Cui Y, Song W, Wei W, He Z, Tao J, Yin D, Chen X, Gao C, Liu J, Liu L, Wu J. Reprogramming the Transition States to Enhance C-N Cleavage Efficiency of Rhodococcus opacusl-Amino Acid Oxidase. JACS AU 2024; 4:557-569. [PMID: 38425913 PMCID: PMC10900486 DOI: 10.1021/jacsau.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
l-Amino acid oxidase (LAAO) is an important biocatalyst used for synthesizing α-keto acids. LAAO from Rhodococcus opacus (RoLAAO) has a broad substrate spectrum; however, its low total turnover number limits its industrial use. To overcome this, we aimed to employ crystal structure-guided density functional theory calculations and molecular dynamic simulations to investigate the catalytic mechanism. Two key steps were identified: S → [TS1] in step 1 and Int1 → [TS2] in step 2. We reprogrammed the transition states [TS1] and [TS2] to reduce the identified energy barrier and obtain a RoLAAO variant capable of catalyzing 19 kinds of l-amino acids to the corresponding high-value α-keto acids with a high total turnover number, yield (≥95.1 g/L), conversion rate (≥95%), and space-time yields ≥142.7 g/L/d in 12-24 h, in a 5 L reactor. Our results indicated the promising potential of the developed RoLAAO variant for use in the industrial production of α-keto acids while providing a potential catalytic-mechanism-guided protein design strategy to achieve the desired physical and catalytic properties of enzymes.
Collapse
Affiliation(s)
- Yaoyun Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaozhong Cui
- Jiangsu
Xishan Senior High School, Wuxi 214174, China
| | - Wei Song
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhizhen He
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinyang Tao
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dejing Yin
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Hu H, Chang Y, Wang Z, Cui J, Jia S, Du Y. A chemo-biocatalyst based on glutamate oxidase-integrated biomimetic trimanganese tetraoxide as cascade composite nano-catalyst for synthesis of α‑Ketoglutaric acid. J Colloid Interface Sci 2023; 650:1833-1841. [PMID: 37515973 DOI: 10.1016/j.jcis.2023.07.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The combination of chemo- and biocatalysts to perform one-pot synthetic route has presented great challenges for decades. Herein, glutamate oxidase (GLOX) and trimanganese tetraoxide (Mn3O4) nanocrystals were combined for the first time by one-step biomineralization to construct a mimic multi-enzyme system (GLOX@Mn3O4) for chemoenzymatic synthesis of α‑ketoglutaric acid (α‑KG). Mn3O4 not only served as a support for the enzyme immobilization, but also contributed its catalytic activity to co-operate with natural enzymes for the cascade reactions. The as-synthesized chemo-enzyme catalysts with directly contacted catalytic sites of the enzyme and inorganic catalyst maximizes the substrate channeling effffects for in situ rapid decomposition of the oxidative intermediate, H2O2, during the enzymatic oxidation of sodium glutamate, thus relieving the inhibition of H2O2 accumulation for GLOX. Benefiting from the excellent stability and reusability of GLOX@Mn3O4, a nearly 100% conversion (99.7%) of l-glutamate to α-KG was achieved, over 4.7 times higher than that of the free GLOX system (21.2%). This work provides a feasibility for constructing a high-performance chemo-enzyme catalyst for cascade catalysis, especially for those reactions with toxic intermediates.
Collapse
Affiliation(s)
- Hongtong Hu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Yuyan Chang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Zhongjie Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China
| | - Yingjie Du
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No. 29, 13th Avenue, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Liu K, Liu Y, Li X, Zhang X, Xue Z, Zhao M. Efficient production of α-ketoglutaric acid using an economical double-strain cultivation and catalysis system. Appl Microbiol Biotechnol 2023; 107:6497-6506. [PMID: 37682299 DOI: 10.1007/s00253-023-12757-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The whole-cell catalysis strategy of alpha-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) using recombinant Escherichia coli, in which L-glutamate oxidase (LGox) was over-expressed, has replaced the traditional chemical synthesis strategy. However, large amounts of toxic by-product, H2O2, should be eliminated through co-expressing catalase (Cat), thus severely increasing burden in cells. To efficiently and economically produce α-KG, here, the genes SpLGox (from Streptomyces platensis NTU3304) and SlCat (from Streptomyces lividans TK24) were inserted into the low-dosage-IPTG (Isopropyl β-D-Thiogalactoside) inducible expression system, constructed in our previous work, in E. coli, respectively. Besides, a double-strain catalysis system was established and optimized to produce α-KG, and the productivity of α-KG was increased 97% compared with that through single strain catalysis. Finally, a double-strain cultivation strategy was designed and employed to simplify the scale-up fermentation. Using the optimized whole-cell biocatalyst conditions (pH 7.0, 35 °C), majority of the L-glutamic acid was transformed into α-KG and the titer reached 95.4 g/L after 6 h with the highest productivity at present. Therefore, this strategy may efficiently and cost-effectively produce α-KG, enhancing its potential for industrial applications. KEY POINTS: • SpLGox and SlCat were over-expressed to catalyze L-Glu to α-KG and eliminate by-product H2O2, respectively. • Double-strain cultivation and catalysis system can efficiently and cost-effectively produce α-KG from L-Glu.
Collapse
Affiliation(s)
- Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiangfei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiushan Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhenglian Xue
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| |
Collapse
|
4
|
Shi X, Yang M, Chu A, Zhang F, Fang J, Xu N, Jiang Y, Li H. Separation of α‐ketoglutaric acid by salting‐out extraction coupled with solar‐driven distillation. AIChE J 2022. [DOI: 10.1002/aic.17814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xueqi Shi
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Meng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Aqiang Chu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Fengyi Zhang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Jing Fang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin China
| | - Yanjun Jiang
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| |
Collapse
|
5
|
Szczygiełda M, Prochaska K. Effective separation of bio-based alpha-ketoglutaric acid from post-fermentation broth using bipolar membrane electrodialysis (EDBM) and fouling analysis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Efficient Surface Display of L-glutamate Oxidase and L-amino Acid Oxidase on Pichia pastoris Using Multi-copy Expression Strains. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0370-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Chen X, Yi J, Liu J, Luo Q, Liu L. Enzymatic production of trans-4-hydroxy-l-proline by proline 4-hydroxylase. Microb Biotechnol 2020; 14:479-487. [PMID: 32618422 PMCID: PMC7936316 DOI: 10.1111/1751-7915.13616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Trans-4-hydroxy-l-proline (Hyp) is a useful chiral building block for production of many nutritional supplements and pharmaceuticals. However, it is still challenging for industrial production of Hyp due to heavy environmental pollution and low production efficiency. To establish a green and efficient process for Hyp production, the proline 4-hydroxylase (DsP4H) from Dactylosporangium sp. RH1 was overexpressed and functionally characterized in Escherichia coli BL21(DE3). The recombinant DsP4H with l-proline as a substrate exhibited Km , kcat and kcat /Km values up to 0.80 mM, 0.52 s-1 and 0.65 s-1 ·mM-1 respectively. Furthermore, DsP4H showed the highest activity at 35°C and pH 6.5 towards l-proline. The highest enzyme activity of 175.6 U mg-1 was achieved by optimizing culture parameters. Under the optimal transformation conditions in a 5-l fermenter, Hyp titre, conversion rate and productivity were up to 99.9 g l-1 , 99.9% and 2.77 g l-1 h-1 respectively. This strategy described here provides an efficient method for production of Hyp and thus has a great potential in industrial application.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Juyang Yi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Shaoxing Baiyin Biotechnology Co. Ltd, Shaoxing, 312000, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Chen X, Dong X, Liu J, Luo Q, Liu L. Pathway engineering of Escherichia coli for α-ketoglutaric acid production. Biotechnol Bioeng 2020; 117:2791-2801. [PMID: 32530489 DOI: 10.1002/bit.27456] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023]
Abstract
α-Ketoglutaric acid (α-KG) is a multifunctional dicarboxylic acid in the tricarboxylic acid (TCA) cycle, but microbial engineering for α-KG production is not economically efficient, due to the intrinsic inefficiency of its biosynthetic pathway. In this study, pathway engineering was used to improve pathway efficiency for α-KG production in Escherichia coli. First, the TCA cycle was rewired for α-KG production starting from pyruvate, and the engineered strain E. coli W3110Δ4-PCAI produced 15.66 g/L α-KG. Then, the rewired TCA cycle was optimized by designing various strengths of pyruvate carboxylase and isocitrate dehydrogenase expression cassettes, resulting in a large increase in α-KG production (24.66 g/L). Furthermore, acetyl coenzyme A (acetyl-CoA) availability was improved by overexpressing acetyl-CoA synthetase, leading to α-KG production up to 28.54 g/L. Finally, the engineered strain E. coli W3110Δ4-P(H) CAI(H) A was able to produce 32.20 g/L α-KG in a 5-L fed-batch bioreactor. This strategy described here paves the way to the development of an efficient pathway for microbial production of α-KG.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiaoxiang Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Wuxi Chenming Biotechnology Co., Ltd., Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Busch F, Brummund J, Calderini E, Schürmann M, Kourist R. Cofactor Generation Cascade for α-Ketoglutarate and Fe(II)-Dependent Dioxygenases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:8604-8612. [PMID: 32953283 PMCID: PMC7493210 DOI: 10.1021/acssuschemeng.0c01122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Indexed: 05/04/2023]
Abstract
Fe(II)- and α-ketoglutarate dependent dioxygenases have emerged as important catalysts for the preparation of non-natural amino acids. The stoichiometric supply of the cosubstrate α-ketoglutarate (αKG) is an important cost factor. A combination of the N-succinyl amino acid hydroxylase SadA with an l-glutamate oxidase (LGOX) allowed for coupling in situ production of αKG to stereoselective αKG-dependent dioxygenases in a one-pot/two-step cascade reaction. Both enzymes were used as immobilized enzymes and tested in a preparative scale setup under process-near conditions. Oxygen supply, enzyme, and substrate loading of the oxidation of glutamate were investigated under controlled reaction conditions on a small scale before upscaling to a 1 L stirred tank reactor. LGOX was applied with a substrate concentration of 73.6 g/L (339 mM) and reached a space-time yield of 14.2 g/L/h. Additionally, the enzyme was recycled up to 3 times. The hydroxylase SadA reached a space-time yield of 1.2 g/L/h at a product concentration of 9.3 g/L (40 mM). For both cascade reactions, the supply with oxygen was identified as a critical parameter. The results underline the robustness and suitability of α-ketoglutarate dependent dioxygenases for application outside of living cells.
Collapse
Affiliation(s)
- Florian Busch
- InnoSyn
B.V., Urmonderbaan 22, NL-6167 RD Geleen The Netherlands
- Junior
Research Group for Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Jan Brummund
- InnoSyn
B.V., Urmonderbaan 22, NL-6167 RD Geleen The Netherlands
| | - Elia Calderini
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Martin Schürmann
- InnoSyn
B.V., Urmonderbaan 22, NL-6167 RD Geleen The Netherlands
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
10
|
Expression and Characterization of a New L-amino Acid Oxidase AAO Producing α-ketoglutaric Acid from L-glutamic Acid. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0182-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Lu Y, Chen Y, Wang Q, Hao X, Liu P, Chu X. Organic–Inorganic Hybrid Nanocomposites: A Novel Way to Immobilize l-Glutamate Oxidase with Manganese Phosphate. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Promoter engineering of cascade biocatalysis for α-ketoglutaric acid production by coexpressing l-glutamate oxidase and catalase. Appl Microbiol Biotechnol 2018; 102:4755-4764. [DOI: 10.1007/s00253-018-8975-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 01/13/2023]
|
13
|
Szczygiełda M, Prochaska K. Alpha-ketoglutaric acid production using electrodialysis with bipolar membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Qian S, Sun J, Lu H, Lu F, Bie X, Lu Z. L-glutamine efficiently stimulates biosynthesis of bacillomycin D in Bacillus subtilis fmbJ. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
YaPing W, Ben R, Hong Y, Rui H, Li L, Ping'an L, Lixin M. High-level expression of l-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation. Protein Expr Purif 2017; 129:108-114. [DOI: 10.1016/j.pep.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
16
|
A. Alhasawi A, D. Appanna V. Manganese orchestrates a metabolic shift leading to the increased bioconversion of glycerol into α-ketoglutarate. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2017.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|