1
|
Abdelrahman Mohammed MA, Wang N, Chen Z, Jin P, Du X, Li B. Study of the poly (butylene adipate-co-terephthalate)/poly (vinyl alcohol) coated recycled Fe 3O 4 magnetic particle carriers for immobilization penicillin G acylase. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:843-871. [PMID: 39589796 DOI: 10.1080/09205063.2024.2432142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
In this work, the process began by coating a layer of poly (butylene adipate-co-terephthalate) (PBAT)/poly (vinyl alcohol) (PVA) on the surface of magnetic Fe3O4 particles (MPs) obtained from the nickel slag. Then, it was grafted by glutaraldehyde (GA) to obtain Fe3O4@PBAT/PVA-g-GA MPs, which were used as a carrier. Finally, the immobilized PGA was achieved by forming a covalent bond through the Schiff base reaction. To confirm each stage, employed Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibration sample magnetometer (VSM), scanning electron microscope-energy spectroscopy of dispersive x-rays (SEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS), and x-ray photoelectron spectrophotometry (XPS). The immobilization conditions were studied and optimized to improve immobilized PGA stability and catalytic activity. The immobilization of PGA demonstrated its optimal performance under the process conditions. The results were achieved using a 2.5 vol.% enzyme solution concentration, a pH of 8.0, an immobilization time of 24 h, and an immobilization temperature of 37 °C. Under these conditions, the immobilized PGA exhibited an enzyme activity recovery (EAR) of 93.71%, an enzyme activity (EA) of 31,367 U/g, and an enzyme loading capacity (ELC) of 111 mg/g. The operating stability, reusability, and storage stability of Fe3O4@PBAT/PVA-g-GA-PGA MPs were investigated. Comparatively, immobilized PGA exhibited superior operational and storage stability compared to free PGA. Even after 11 repeated uses, the immobilized PGA retained 58% of its initial activity, while the carrier recovery (Re) reached 82%. This indicated that the immobilized PGA MPs offer improved longevity and efficiency, making them a promising choice for practical applications.
Collapse
Affiliation(s)
- Monier Alhadi Abdelrahman Mohammed
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
- Department of Chemistry, Faculty of Science, University of Kordofan, Alobaied, Sudan
| | - Nan Wang
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Zhenbin Chen
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Pen Jin
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Xueyan Du
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| | - Bin Li
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
2
|
Monica P, Ranjan R, Kapoor M. Family 3 CBM improves the biochemical properties, substrate hydrolysis and coconut oil extraction by hemicellulolytic and holocellulolytic chimeras. Enzyme Microb Technol 2024; 174:110375. [PMID: 38157781 DOI: 10.1016/j.enzmictec.2023.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
To understand the influence of family 3 Carbohydrate Binding Module (hereafter CBM3), single (GH5 cellulase; CelB, CelBΔCBM), bi-chimeric [GH26 endo-mannanase (ManB-1601) and GH11 endo-xylanase (XynB); ManB-XynB [1], ManB-XynB-CBM] and tri-chimeric [ManB-XynB-CelB [1], ManB-XynB-CelBΔCBM] enzyme variants (fused or deleted of CBM) were produced and purified to homogeneity. CBM3 did not alter the pH and temperature optima of bi- and tri-chimeric enzymes but improved the pH and temperature stability of ManB in CBM variants of bi-/tri-chimeric enzymes. Truncation of CBM in CelB shifted the pH optimum and increased the melting temperature (Tm 65 ℃). CBM3 improved both substrate affinity (Km) and catalytic efficiency (kcat/Km) of fused enzymes in tri-chimera and CelB but only Km for bi-chimera. Far-UV CD of CelB and bi- and tri-chimeric enzymes suggested that CBM3 improved the α-helical content and compactness in the native state but did not prevent disintegration of secondary structural contents at acidic pH. Steady-state fluorescence studies suggested that under acidic conditions CBM3 prevented the exposure of hydrophobic patches in bi-chimeric protein but could not avert the opening up of chimeric enzyme structure. Aqueous enzyme assisted treatment of mature coconut kernel using single, bi- and tri-chimeric enzymes led to cracks, peeling and fracturing of the matrix and improved the oil yield by up to 22%.
Collapse
Affiliation(s)
- P Monica
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Ritesh Ranjan
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
3
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
4
|
Bhati N, Shreya, Sharma AK. Strain improvement of Aspergillus uvarum CBS 121591 for improved production of cellulase and its immobilization on calcium alginate beads. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Dixit R, Khambhati K, Supraja KV, Singh V, Lederer F, Show PL, Awasthi MK, Sharma A, Jain R. Application of machine learning on understanding biomolecule interactions in cellular machinery. BIORESOURCE TECHNOLOGY 2023; 370:128522. [PMID: 36565819 DOI: 10.1016/j.biortech.2022.128522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Machine learning (ML) applications have become ubiquitous in all fields of research including protein science and engineering. Apart from protein structure and mutation prediction, scientists are focusing on knowledge gaps with respect to the molecular mechanisms involved in protein binding and interactions with other components in the experimental setups or the human body. Researchers are working on several wet-lab techniques and generating data for a better understanding of concepts and mechanics involved. The information like biomolecular structure, binding affinities, structure fluctuations and movements are enormous which can be handled and analyzed by ML. Therefore, this review highlights the significance of ML in understanding the biomolecular interactions while assisting in various fields of research such as drug discovery, nanomedicine, nanotoxicity and material science. Hence, the way ahead would be to force hand-in hand of laboratory work and computational techniques.
Collapse
Affiliation(s)
- Rewati Dixit
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Haus-khas, New Delhi 110016, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Kolli Venkata Supraja
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Haus-khas, New Delhi 110016, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner landstrasse 400, 01328 Dresden, Germany
| | - Pau-Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Abhinav Sharma
- Institute Theory of Polymers, Leibniz Institute for Polymer Research, Hohe Strasse 6, 01069 Dresden, Germany
| | - Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
6
|
Cellulose-degrading enzymes: key players in biorefinery development. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Zhang B, Zhou Y, Liu C, Abdelrahman Mohammed MA, Chen Z, Chen Z. Immobilized penicillin G acylase with enhanced activity and stability using glutaraldehyde-modified polydopamine-coated Fe 3 O 4 nanoparticles. Biotechnol Appl Biochem 2022; 69:629-641. [PMID: 33650711 DOI: 10.1002/bab.2138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 01/01/2023]
Abstract
In this work, Fe3 O4 nanoparticles (NPs) were coated with polydopamine (PDA) to structure Fe3 O4 @PDA NPs by the spontaneous oxygen-mediated self-polymerization of dopamine (DA) in an aqueous solution of pH = 8.5. The fabricated Fe3 O4 @PDA NPs were grafted by glutaraldehyde to realize the immobilization of penicillin G acylase (PGA) under mild conditions. The carriers of each stage were characterized and investigated by transmission electron microscopy, X-ray diffraction, Fourier transform infrared, and vibrating sample magnetometry. To improve the catalytic activity and stability of immobilized PGA, the immobilization conditions were investigated and optimized. Under the optimal immobilization conditions, the enzyme loading capacity, enzyme activity, and enzyme activity recovery of immobilized PGA were 114 mg/g, 26,308 U/g, and 78.5%, respectively. In addition, the immobilized PGA presented better temperature and pH stability compared with free PGA. The reusability study ensured that the immobilized PGA showed an excellent repeating application performance. In particular, the recovery rate of immobilized PGA could reach 94.8% and immobilized PGA could retain 73.0% of its original activity after 12 cycles, indicating that the immobilized PGA exhibited a high operation stability and broad application potential in the biocatalysis field.
Collapse
Affiliation(s)
- Boyuan Zhang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Yongshan Zhou
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Chunli Liu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Monier Alhadi Abdelrahman Mohammed
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Zhangjun Chen
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| | - Zhenbin Chen
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
8
|
Hackenhaar CR, Spolidoro LS, Flores EEE, Klein MP, Hertz PF. Batch synthesis of galactooligosaccharides from co-products of milk processing using immobilized β-galactosidase from Bacillus circulans. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Cellulase immobilized by sodium alginate-polyethylene glycol-chitosan for hydrolysis enhancement of microcrystalline cellulose. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Guo R, Zheng X, Wang Y, Yang Y, Ma Y, Zou D, Liu Y. Optimization of Cellulase Immobilization with Sodium Alginate-Polyethylene for Enhancement of Enzymatic Hydrolysis of Microcrystalline Cellulose Using Response Surface Methodology. Appl Biochem Biotechnol 2021; 193:2043-2060. [PMID: 33544365 DOI: 10.1007/s12010-021-03517-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
A novel method of immobilizing cellulase on sodium alginate (SA)-polyethylene glycol (PEG) enabled the cellulase to be used repeatedly. The matrix of the immobilized cellulase was detected and characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. In comparison with SA-immobilized cellulase, the relative enzyme activity and immobilization rate increased by 25% and 18%, respectively. The application range of the immobilized enzyme in terms of temperature and pH was larger than that of the free enzyme, and its thermal stability increased. The immobilized enzyme was used in enzymatic hydrolysis, in which MCC was used as the substrate. The optimal conditions for enzymatic hydrolysis were as follows: the dosage of SA-PEG-immobilized cellulase was 3.55 g/g total solids of the substrate, the concentration of the substrate was 13.16%, and the pH was 5.11. In comparison with the yield of reducing sugars in the first round of hydrolysis of MCC by SA-immobilized cellulase, the yield in the hydrolysis of MCC by SA-PEG-immobilized cellulase increased by 133%. After five cycles of repeated use, the total yield of reducing sugars when MCC was hydrolyzed by SA-PEG-immobilized cellulase was similar to that achieved with free cellulase. In comparison with the free enzyme, the highest yield when the immobilized enzyme was used was 22.68%. Therefore, the immobilized cellulase exhibited high performance in enzymatic hydrolysis.
Collapse
Affiliation(s)
- Rongxin Guo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xusheng Zheng
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiwen Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifang Ma
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dexun Zou
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Vaz RP, Vici AC, Teixeira de Moraes Polizeli MDL, Magalhães PO, Filho EXF. Immobilization studies of a pectinase produced by Aspergillus terreus. Biotechnol Appl Biochem 2020; 68:197-208. [PMID: 32770865 DOI: 10.1002/bab.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023]
Abstract
Aspergillus terreus can produce different holocellulose-degrading enzymes when grown in sugarcane bagasse, with predominant pectinase activity. Thus, pectinase was selected for purification and immobilization studies. Ion exchange and molecular exclusion chromatography studies were performed, after which it was possible to semipurify the enzyme with a yield of 80%. The crude extract pectinase (PECEB) and the partially purified enzyme (PEC2) were immobilized on monoamino-N-aminoethyl (MANAE)-agarose with pectinase activity yields of 66% and 98%, respectively. After immobilization in MANAE-agarose, the pectinase showed higher activity at acidic pH (pH 4.0) when compared to the nonimmobilized enzyme. It was also found that after the immobilization process, there was a threefold improvement in the enzyme's thermostability. Also, it was possible to reuse the immobilized enzyme for up to five cycles of hydrolysis with effective production of reducing sugars (0.196 mg/g of substrate). The industrial application test revealed a significant decrease in the viscosity of guava juice when the immobilized enzyme was used. PECEB, immobilized on MANAE-agarose, was the enzyme sample that generated the highest pulp viscosity reduction (approximately 47%). Although additional studies are needed for practical industrial application, the results obtained herein reveal the potential of application of immobilized pectinase in the industry.
Collapse
Affiliation(s)
- Raissa Pieroni Vaz
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília, Brasília, DF, Brazil
| | - Ana Claudia Vici
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
12
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
13
|
Papadopoulou A, Zarafeta D, Galanopoulou AP, Stamatis H. Enhanced Catalytic Performance of Trichoderma reesei Cellulase Immobilized on Magnetic Hierarchical Porous Carbon Nanoparticles. Protein J 2020; 38:640-648. [PMID: 31549278 DOI: 10.1007/s10930-019-09869-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulase from Trichoderma reesei was immobilized by covalent or non-covalent binding onto magnetic hierarchical porous carbon (MHPC) nanomaterials. The immobilization yield and the enzyme activity were higher when covalent immobilization approach was followed. The covalent immobilization approach leads to higher immobilization yield (up to 96%) and enzyme activity (up to 1.35 U mg-1) compared to the non-covalent cellulase binding. The overall results showed that the thermal, storage and operational stability of the immobilized cellulase was considerably improved compared to the free enzyme. The immobilized cellulose catalyzed the hydrolysis of microcrystalline cellulose up to 6 consecutive successive reaction cycles, with a total operation time of 144 h at 50 °C. The half-life time of the immobilized enzyme in deep eutectic solvents-based media was up to threefold higher compared to the soluble enzyme. The increased pH and temperature tolerance of the immobilized cellulase, as well as the increased operational stability in aqueous and deep eutectic solvents-based media indicate that the use of MHPCs as immobilization nanosupport could expand the catalytic performance of cellulolytic enzymes in various reaction conditions.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
| | - Dimitra Zarafeta
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | | | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
14
|
Covalent immobilization and characterization of penicillin G acylase on amino and GO functionalized magnetic Ni0.5Zn0.5Fe2O4@SiO2 nanocomposite prepared via a novel rapid-combustion process. Int J Biol Macromol 2019; 134:507-515. [DOI: 10.1016/j.ijbiomac.2019.05.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
|
15
|
Ćorović M, Simović M, Milivojević A, Banjanac K, Katić K, Bezbradica D. Immobilization of Aspergillus Niger cellulase onto Lifetech TM carriers and its application in the hydrolysis of sunflower seed meal lignocellulosic fraction. FOOD AND FEED RESEARCH 2019. [DOI: 10.5937/ffr1902161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
16
|
|
17
|
Gracida J, Arredondo-Ochoa T, García-Almendárez BE, Escamilla-García M, Shirai K, Regalado C, Amaro-Reyes A. Improved Thermal and Reusability Properties of Xylanase by Genipin Cross-Linking to Magnetic Chitosan Particles. Appl Biochem Biotechnol 2018; 188:395-409. [DOI: 10.1007/s12010-018-2928-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023]
|
18
|
Yang Y, Yang J, Cao J, Wang Z. Pretreatment with concurrent UV photocatalysis and alkaline H 2O 2 enhanced the enzymatic hydrolysis of sisal waste. BIORESOURCE TECHNOLOGY 2018; 267:517-523. [PMID: 30048927 DOI: 10.1016/j.biortech.2018.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
This work studied a concurrent UV photocatalysis and alkaline H2O2 pretreatment (UHP) to enhance the subsequent enzymatic hydrolysis of sisal waste in comparison with alkaline H2O2 pretreatment (AHP). An optimal condition was identified for UHP at H2O2 charge 0.1 g/g dried sisal waste, pH 10.0, and UV radiation for 6 h. Under this condition, UHP led to a delignification rate of 76.6%, a conversion to reducing sugar at 71.2%, and a conversion to glucose at 91.6%, respectively. XRD, FT-IR and SEM analysis showed an increase in crystalline degree and significant changes in the structure of sisal during UHP. The current study implicates that UHP is more efficient than AHP in pretreating sisal waste, with reduced H2O2 charge, shortened pretreatment time, and enhanced enzymatic digestibility.
Collapse
Affiliation(s)
- Yishuo Yang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Jing Cao
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China.
| |
Collapse
|
19
|
Nanoimmobilization of β-glucosidase onto hydroxyapatite. Int J Biol Macromol 2018; 119:1042-1051. [DOI: 10.1016/j.ijbiomac.2018.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022]
|
20
|
Diyanat S, Homaei A, Mosaddegh E. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int J Biol Macromol 2018; 118:92-98. [DOI: 10.1016/j.ijbiomac.2018.06.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/14/2022]
|
21
|
Mehnati-Najafabadi V, Taheri-Kafrani A, Bordbar AK, Eidi A. Covalent immobilization of xylanase from Thermomyces lanuginosus on aminated superparamagnetic graphene oxide nanocomposite. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1477-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Rempel A, Machado T, Treichel H, Colla E, Margarites AC, Colla LM. Saccharification of Spirulina platensis biomass using free and immobilized amylolytic enzymes. BIORESOURCE TECHNOLOGY 2018; 263:163-171. [PMID: 29738979 DOI: 10.1016/j.biortech.2018.04.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
We aimed to use physical methods of microalgal biomass rupture to study saccharification strategies using free and immobilized amylolytic enzymes. The biomass of Spirulina platensis, which consists of 50-60% carbohydrates, was exposed to physical cell rupture treatments, with better results obtained using freeze/thaw cycles following by gelatinization. In saccharification tests, it was possible to hydrolyze Spirulina biomass with hydrolysis efficiencies above 99% and 83%, respectively, using 1% (v/v) of free enzymes or 1% (m/v) of amylolytic enzymes immobilized together. The use of free and immobilized enzymes yielded high levels of conversion of polysaccharides to simple sugars in Spirulina biomass, showing that these processes are promising for the advancement of bioethanol production using microalgal biomass.
Collapse
Affiliation(s)
- Alan Rempel
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Tainara Machado
- Food Engineering Course, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Helen Treichel
- Graduation in Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - Eliane Colla
- Graduation in Food Technology, Federal Technological University of Paraná (UTFPR), Av. Brasil, 4232, 85884-000, P.O. Box 271, Medianeira, Paraná, Brazil
| | - Ana Cláudia Margarites
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Luciane Maria Colla
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Wang D, Yan L, Ma X, Wang W, Zou M, Zhong J, Ding T, Ye X, Liu D. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. Int J Biol Macromol 2018; 119:453-461. [PMID: 30041035 DOI: 10.1016/j.ijbiomac.2018.07.133] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
With the extensive application of enzyme-catalyzed reactions in numerous fields, improving enzymatic efficiency has attracted wide attention for reducing operating costs and increasing output. There are three targets throughout enzymatic reactions: the enzyme, substrate, and mixed reaction system. Ultrasound has been known to accelerate enzymatic reactions by acting on different targets. It can modify both enzyme and substrate macromolecules, which is helpful for enhancing enzyme activity and product yields. The synergistic effect of ultrasound and enzymes is widely reported to increase catalytic rates. The present review discusses the positive effect induced by ultrasound throughout the enzymatic process, including ultrasonic modification of enzymes, ultrasound assisted immobilization, ultrasonic pretreatment of substrates, and ultrasound assisted enzymatic reactions.
Collapse
Affiliation(s)
- Danli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lufeng Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianjun Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Razzaghi M, Homaei A, Mosaddegh E. Penaeus vannamei protease stabilizing process of ZnS nanoparticles. Int J Biol Macromol 2018; 112:509-515. [PMID: 29382577 DOI: 10.1016/j.ijbiomac.2018.01.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/24/2022]
Abstract
The protease enzyme purified from the Penaeus vannamei shrimp has unique properties, so improving the stability of this enzyme can improve their practical applications. In this study, ZnS nanoparticles, which have special properties for enzyme immobilization, were synthesized using a chemical precipitation method, and Penaeus vannamei protease was successfully immobilized on them. The size, structure, and morphology of the ZnS nanoparticles, and the immobilization of the protease were studied, using Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, UV-Vis spectroscopy and Dynamic Light Scattering (DLS) analysis. We show that the immobilized enzyme has improved functionality at high temperatures, extreme pH conditions (pH3 and 12), and during storage. Immobilization increased the optimum temperature range of the enzyme, but did not change the pH optimum, which remained at pH7. Immobilization of P. vannamei protease enzyme increased the Km and decreased kcat/Km. These results indicate that P. vannamei protease immobilized on ZnS nanoparticles, has improved properties due to its high stability and unique properties, can be used for biotechnology applications.
Collapse
Affiliation(s)
- Mozhgan Razzaghi
- Department of Marine Biology, Faculty of Science, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Science, University of Hormozgan, Bandar Abbas, Iran.
| | - Elaheh Mosaddegh
- Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, PO Box 76315-117, Kerman, Iran
| |
Collapse
|
25
|
Khoshnevisan K, Vakhshiteh F, Barkhi M, Baharifar H, Poor-Akbar E, Zari N, Stamatis H, Bordbar AK. Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|