1
|
Ni X, Feng T, Zhang Y, Lin Z, Kong F, Zhang X, Lu Q, Zhao Y, Zou B. Application Progress of Immobilized Enzymes in the Catalytic Synthesis of 1,3-Dioleoyl-2-palmitoyltriglyceride Structured Lipids. Foods 2025; 14:475. [PMID: 39942068 PMCID: PMC11816798 DOI: 10.3390/foods14030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
In recent years, the preparation of OPO (1,3-dioleoyl-2-palmitoyltriglyceride)-structured lipids through immobilized lipase catalysis has emerged as a research hotspot in the fields of food and biomedical sciences. OPO structured lipids, renowned for their unique molecular structure and biological functions, find wide applications in infant formula milk powder, functional foods, and nutritional supplements. Lipase-catalyzed reactions, known for their efficiency, high selectivity, and mild conditions, are ideal for the synthesis of OPO structured lipids. Immobilized lipases not only address the issues of poor stability and difficult recovery of free enzymes but also enhance catalytic efficiency and reaction controllability. This review summarizes the latest advancements in the synthesis of OPO structured lipids using immobilized lipases, focusing on immobilization methods, enhancements in enzyme activity and stability, the optimization of reaction conditions, and improvements in product purity and yield. Furthermore, it delves into the reaction mechanisms of enzymatic synthesis of OPO structured lipids, process optimization strategies, and the challenges and broad prospects faced during industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.N.); (T.F.); (Y.Z.); (Z.L.); (F.K.); (X.Z.); (Q.L.); (Y.Z.)
| |
Collapse
|
2
|
He L, Zeng C, Wei L, Xu L, Song F, Huang J, Zhong N. Fabrication of immobilized lipases for efficient preparation of 1,3-dioleoyl-2-palmitoylglycerol. Food Chem 2023; 408:135236. [PMID: 36549162 DOI: 10.1016/j.foodchem.2022.135236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
This study aims to fabricate immobilized lipases for efficient preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) through acidolysis of glycerol tripalmitate (PPP). Twelve (three types) supports and five lipases were studied carefully. Among them, the immobilized Thermomyces lanuginosa lipase (TLL) samples exhibited overall better performance than that of other immobilized lipases. Particularly, organic groups functionalized SBA-15 (R-SBA-15) supported TLL (TLL@R-SBA-15) samples gave PPP conversion from 97.70 to 99.00 % and OPO content from 59.52 to 64.73 %. After optimization, PPP conversion up to 99.07 %, OPO content 73.15 % and sn-2 palmitic acid content 90.09 % were obtained with TLL@C18H37-SBA-15 as catalyst. Moreover, TLL@C18H37-SBA-15 exhibited better acidolysis performance from 50 °C than that from 60 to 80 °C, which helped inhibit acyl migration. In addition, after 5 cycles of reuse, TLL@C18H37-SBA-15 retained 81.04 % (based on OPO content) and 98.88 % (based on sn-2 palmitic acid content) of its initial activity, indicating it had an attractive prospect in future applications.
Collapse
Affiliation(s)
- Lihong He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Can Zeng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lingfeng Wei
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Fenglin Song
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
3
|
A comparative study of human milk fat substitute from Rhodococcus opacus and plant-oil based commercial products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:2400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| |
Collapse
|
5
|
Chen M, Yang C, Deng L, Wang F, Liu J. Production of 1, 3- medium chain-2-long chain (MLM) triacylglycerols by metabolically engineered Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Ghide MK, Yan Y. 1,3-Dioleoyl-2-palmitoyl glycerol (OPO)-Enzymatic synthesis and use as an important supplement in infant formulas. J Food Biochem 2021; 45:e13799. [PMID: 34080206 DOI: 10.1111/jfbc.13799] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 01/09/2023]
Abstract
1,3-dioleolyl-2-palmitate (OPO) is an important component of the human milk fat. Its unique fatty acid composition and distribution play an important role in proper infant growth and development. Owing to this, it has been attracting researchers and manufacturers to synthesize and commercialize OPO as an important human milk fat substitute added to infant formulas. In this review, the role of OPO in human milk, the benefits of OPO (sn-2 palmitate)-supplemented infant formulas over the conventional infant formulas on infant growth, and lipase-catalyzed synthesis of OPO are discussed. Over the last 20 years of research on the benefits of OPO (sn2 palmitate)-supplemented infant formulas are summarized. Similarly, studies carried out on lipase catalyzed production of OPO for the last 21 years (1999-2019) are also done focusing on the raw materials, sn1,3-regiospecific lipases, immobilization materials, and solvents used in the laboratory-scale experiments. In addition, OPO-based products currently in the market and future research trends are briefly covered in this review. PRACTICAL APPLICATIONS: This work focuses on lipase-catalyzed synthesis of 1,3-dioleoyl-2-palmitoylglycerol (the most abundant triacyl glycerol in human milk fat) and its benefits to infants when it is added in infant formulas. Over the last 20 years of published research from the literature are summarized and future research trends for efficient OPO synthesis are also covered. This will provide current and future researchers on the field with the necessary background information on OPO synthesis and design their research plans accordingly for cost-effective production of OPO and OPO-supplemented infant formulas.
Collapse
Affiliation(s)
- Michael Kidane Ghide
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Liu C, Chen A, Xu L, Wang T, Zhang R, Xu J, Yu Y, Nie K, Deng L, Wang F. Synthesis of middle-long-middle structured intralipids by biological catalysis and the evaluation of intralipids' protective effect on liver injury rats. Food Sci Nutr 2021; 9:2381-2389. [PMID: 34026057 PMCID: PMC8116870 DOI: 10.1002/fsn3.2079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Intralipids are widely used to provide energy and necessary fatty acids for the patients. The structure of lipids may affect their function. We developed a bio-catalyzed route to prepare various intralipids and investigated the protective effect of intralipids against α-naphthylisothiocyanate (ANIT) induced liver injury rats, further discussing the structure-function relationship. The middle-long-middle (MLM) structural intralipid was synthesized through alcoholysis-esterification, and the influence factors were investigated. ANIT treatment caused liver injury, further making hepatocyte damage, and increasing related biochemical indexes, like aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and total bilirubin (TBIL). Especially, MLM-based and structoglyceride (STG) intralipids worked better in the early stage, to reduce the AST, ALT, and TBIL (p < .05). MLM showed a comparative advantage over other intralipids to accelerate the reduction of ALT (1st day) and AST (3rd day). MLM intralipid might be a promising next-generation intralipid than the current STG intralipid liver-injury patients. The biological catalysis MLM-based intralipids can make the maximum utilization of fatty acids for the liver regeneration, where middle-chain fatty acid (MCFA) in sn-1,3 position can be metabolized directly to provide energy and long-chain fatty acid (LCFA) in sn-2 position can be delivered effectively for cell membrane repairing.
Collapse
Affiliation(s)
- Changsheng Liu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| | - An’nan Chen
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| | - Li Xu
- Department of Hepatobiliary SurgeryChina‐Japan Friendship HospitalBeijingChina
| | - Tianqi Wang
- National Research Institute for Family PlanningBeijingChina
| | - Renwei Zhang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| | - Juntao Xu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| | - Yue Yu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| | - Li Deng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| | - Fang Wang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource EngineeringCollege of Life Science and TechnologyBeijing University of Chemical Technology (BUCT)BeijingChina
| |
Collapse
|
8
|
Agapay RC, Ju Y, Tran‐Nguyen PL, Ismadji S, Angkawijaya AE, Go AW. Process evaluation of solvent‐free lipase‐catalyzed esterification schemes in the synthesis of structured triglycerides from oleic and palmitic acids. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramelito Casado Agapay
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Yi‐Hsu Ju
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
- Taiwan Building Technology Center National Taiwan University of Science and Technology Taipei Taiwan
| | | | - Suryadi Ismadji
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Alchris Woo Go
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| |
Collapse
|
9
|
Solvent-Free Alcoholysis of Tripalmitin to Produce 2-Monoglyceride as Precursor for 1, 3-Oleoyl-2-Palmitoylglycerol. Appl Biochem Biotechnol 2019; 190:867-879. [DOI: 10.1007/s12010-019-03136-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|