1
|
Monika, Sheetal, Thakur N, Chand Bhalla T. Biotransformation of 3-cyanopyridine to nicotinic acid using whole-cell nitrilase of Gordonia terrae mutant MN12. Bioprocess Biosyst Eng 2023; 46:195-206. [PMID: 36451047 DOI: 10.1007/s00449-022-02823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In the present study, the Gordonia terrae was subjected to chemical mutagenesis using ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 5-bromouracil (5-BU) and hydroxylamine with the aim of improving the catalytic efficiency of its nitrilase for conversion of 3-cyanopyridine to nicotinic acid. A mutant MN12 generated with MNNG exhibited increase in nitrilase activity from 0.5 U/mg dcw (dry cell weight) (in the wild G. terrae) to 1.33 U/mg dcw. Further optimizations of culture conditions using response surface methodology enhanced the enzyme production to 1.2-fold. Whole-cell catalysis was adopted for bench-scale synthesis of nicotinic acid, and 100% conversion of 100 mM 3-cyanopyridine was achieved in potassium phosphate buffer (0.1 M, pH 8.0) at 40 °C in 15 min. The whole-cell nitrilase of the mutant MN12 exhibited higher rate of product formation and volumetric productivity, i.e., 24.56 g/h/g dcw and 221 g/L as compared to 8.95 g/h/g dcw and 196.8 g/L of the wild G. terrae. The recovered product was confirmed by HPLC, FTIR and NMR analysis with high purity (> 99.9%). These results indicated that the mutant MN12 of G. terrae as whole-cell nitrilase is a very promising biocatalyst for the large-scale synthesis of nicotinic acid.
Collapse
Affiliation(s)
- Monika
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India
| | - Sheetal
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India
| | - Neerja Thakur
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India
| | - Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India.
| |
Collapse
|
2
|
Monika, Sheetal, Thakur N, Bhalla TC. An improved process for synthesis of nicotinic acid using hyper induced whole cell nitrilase of Gordonia terrae MTCC8139. 3 Biotech 2022; 12:303. [PMID: 36276445 PMCID: PMC9525517 DOI: 10.1007/s13205-022-03381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022] Open
Abstract
Nitrilase mediated synthesis of nicotinic acid (vitamin B3) from 3-cyanopyridine has emerged as promising viable alternative to its chemical synthesis. In the present investigation, the nitrilase production in Gordonia terrae MTCC8139 has been increased by two fold with inducer feeding approach [i.e. the addition of 0.5% (v/v) isobutyronitrile as inducer at 0, 16 and 24 h of incubation of the culture]. The use of hyper induced whole cell nitrilase of G. terrae as biocatalyst (10 U per ml reaction) to synthesize nicotinic acid from 3-cyanopyridine in a fed batch reaction at one litre scale resulted in accumulation of 1.65 M (202 g) nicotinic acid in 330 min. The catalytic productivity of hyper induced whole cell nitrilase was increased from 8.95 to 15.3 g/h/g dcw and the reaction time was reduced to half. This is the highest productivity of nicotinic acid in a nitrilase mediated process so far reported. The achievements of the present investigation will lead to mitigate the cost of nitrilase vis-a-vis nicotinic acid production at large scale.
Collapse
Affiliation(s)
- Monika
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, HP 171005 India
| | - Sheetal
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, HP 171005 India
| | - Neerja Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, HP 171005 India
| | - Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, HP 171005 India
| |
Collapse
|
3
|
Santos EDC, de Menezes LHS, Santos CS, Santana PVB, Soares GA, Tavares IMDC, Freitas JDS, de Souza-Motta CM, Bezerra JL, da Costa AM, Uetanabaro APT, Porto ALM, Franco M, de Oliveira JR. High-throughput screening for distinguishing nitrilases from nitrile hydratases in Aspergillus and application of a Box-Behnken design for the optimization of nitrilase. Biotechnol Appl Biochem 2021; 69:2081-2090. [PMID: 34617628 DOI: 10.1002/bab.2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 11/11/2022]
Abstract
Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes. In the present study, 26 microorganisms, including yeasts and filamentous fungi, in a minimum solid mineral medium supplemented with glucose and phenylacetonitrile were screened to evaluate their biocatalytic potential. Of these microorganisms, five fungi of the genus Aspergillus were selected and subjected to colorimetry studies to evaluate the production and distinction of nitrilase and nitrile hydratase/amidase enzymes. Aspergillus parasiticus Speare 7967 and A. niger Tiegh. 8285 produced nitrilases and nitrile hydratase, respectively. Nitrilase optimization was performed using a Box-Behnken design (BBD) and fungus A. parasiticus Speare 7967 with phenylacetonitrile volume (μl), pH, and carbohydrate source (starch:glucose; g/g) as independent variables and nitrilase activity (U ml-1 ) as dependent variable. Maximum activity (2.97 × 10-3 U ml-1 ) was obtained at pH 5.5, 80 μl of phenylacetonitrile, and 15 g of glucose. A. parasiticus Speare 7967 showed promise in the biotransformation of nitriles to carboxylic acids.
Collapse
Affiliation(s)
- Edvan do Carmo Santos
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Carolline Silva Santos
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | | | | - Janaina de Silva Freitas
- Department of Exact and Natural Sciences, State University of Southwest Bahia, Itapetinga, Bahia, Brazil
| | | | - José Luiz Bezerra
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Andréa Miura da Costa
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | |
Collapse
|
4
|
Zhang HB, Cao Z, Qiao JX, Zhong ZQ, Pan CC, Liu C, Zhang LM, Wang YF. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog 2021; 17:e1009859. [PMID: 34383852 PMCID: PMC8384202 DOI: 10.1371/journal.ppat.1009859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/24/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.
Collapse
Affiliation(s)
- Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zi-Qian Zhong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen-Chen Pan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
5
|
Teepakorn C, Zajkoska P, Cwicklinski G, De Berardinis V, Zaparucha A, Nonglaton G, Anxionnaz-Minvielle Z. Nitrilase immobilization and transposition from a micro-scale batch to a continuous process increase the nicotinic acid productivity. Biotechnol J 2021; 16:e2100010. [PMID: 34270173 DOI: 10.1002/biot.202100010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
In recent years, many biocatalytic processes have been developed for the production of chemicals and pharmaceuticals. In this context, enzyme immobilization methods have attracted attention for their advantages, such as continuous production and increased stability. Here, enzyme immobilization methods and a collection of nitrilases from biodiversity for the conversion of 3-cyanopyridine to nicotinic acid were screened. Substrate conversion over 10 conversion cycles was monitored to optimize the process. The best immobilization conditions were found with cross-linking using glutaraldehyde to modify the PMMA beads. This method showed good activity over 10 cycles in a batch reactor at 30 and 40°C. Finally, production with a new thermostable nitrilase was examined in a continuous packed bed reactor, showing very high stability of the biocatalytic process at a flow rate of 0.12 ml min-1 and a temperature of 50°C. The complete conversion of 3-cyanopyridine was obtained over 30 days of operation. Future steps will concern reactor scale-up to increase the production rate with reasonable pressure drops.
Collapse
Affiliation(s)
- Chalore Teepakorn
- CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), Univ. Grenoble Alpes, Grenoble, France.,CEA, LETI, DTBS, Laboratoire des Systèmes Microfluidiques pour la Biologie (LSMB), Univ. Grenoble Alpes, Grenoble, France
| | - Petra Zajkoska
- CEA, LETI, DTBS, Laboratoire Chimie, Capteurs et Biomatériaux (L2CB), Univ. Grenoble Alpes, Grenoble, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Univ. Paris-Saclay, Paris, France
| | - Gregory Cwicklinski
- CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), Univ. Grenoble Alpes, Grenoble, France
| | - Véronique De Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Univ. Paris-Saclay, Paris, France
| | - Anne Zaparucha
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Univ. Paris-Saclay, Paris, France
| | - Guillaume Nonglaton
- CEA, LETI, DTBS, Laboratoire Chimie, Capteurs et Biomatériaux (L2CB), Univ. Grenoble Alpes, Grenoble, France
| | - Zoé Anxionnaz-Minvielle
- CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
6
|
Studies on a thermostable nitrilase from Staphylococcus Sp and its In-silico characterisation. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00554-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Sunder AV, Shah S, Rayavarapu P, Wangikar PP. Expanding the repertoire of nitrilases with broad substrate specificity and high substrate tolerance for biocatalytic applications. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Xu Z, Huang JW, Xia CJ, Zou SP, Xue YP, Zheng YG. Enhanced catalytic stability and reusability of nitrilase encapsulated in ethyleneamine-mediated biosilica for regioselective hydrolysis of 1-cyanocycloalkaneacetonitrile. Int J Biol Macromol 2019; 130:117-124. [DOI: 10.1016/j.ijbiomac.2019.02.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
|
9
|
Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous. Appl Microbiol Biotechnol 2018; 102:10055-10065. [DOI: 10.1007/s00253-018-9367-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
|
10
|
Gong JS, Zhang Q, Gu BC, Dong TT, Li H, Li H, Lu ZM, Shi JS, Xu ZH. Efficient biocatalytic synthesis of nicotinic acid by recombinant nitrilase via high density culture. BIORESOURCE TECHNOLOGY 2018; 260:427-431. [PMID: 29655898 DOI: 10.1016/j.biortech.2018.03.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The constitutively expression system for P. putida nitrilase was firstly constructed to improve the nicotinic acid production and reduce the production costs. High density culture strategy was employed to enhance the biomass and nitrilase production of recombinant strain. The total nitrilase activity reached up to 654 U·mL-1 without the induction. 541 g·L-1 nicotinic acid was accumulated via fed batch mode of substrate feeding through 290 min of conversion.
Collapse
Affiliation(s)
- Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Qiang Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Bing-Chen Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Ting-Ting Dong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Fan H, Chen L, Sun H, Wang H, Ren Y, Wei D. A novel nitrilase from Ralstonia eutropha H16 and its application to nicotinic acid production. Bioprocess Biosyst Eng 2017; 40:1271-1281. [DOI: 10.1007/s00449-017-1787-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022]
|
12
|
Bioengineering of Nitrilases Towards Its Use as Green Catalyst: Applications and Perspectives. Indian J Microbiol 2017; 57:131-138. [PMID: 28611489 DOI: 10.1007/s12088-017-0645-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022] Open
Abstract
Nitrilases are commercial biocatalysts used for the synthesis of plastics, paints, fibers in the chemical industries, pharmaceutical drugs and herbicides for agricultural uses. Nitrilase hydrolyses the nitriles and dinitriles to their corresponding carboxylic acids and ammonia. They have a broad range of substrate specificities as well as enantio-, regio- and chemo-selective properties which make them useful for biotransformation of nitriles to important compounds because of which they are considered as 'Green Catalysts'. Nitriles are widespread in nature and synthesized as a consequence of anthropogenic and biological activities. These are also present in certain plant species and are known to cause environmental pollution. Biotransformation using native organisms as catalysts tends to be insufficient since the enzyme of interest has very low amount in the total cellular protein, rate of reaction is slow along with the instability of enzymes. Therefore, to overcome these limitations, bioengineering offers an alternative approach to alter the properties of enzymes to enhance the applicability and stability. The present review highlights the aspects of producing the recombinant microorganisms and overexpressing the enzyme of interest for the enhanced stability at high temperatures, immobilization techniques, extremes of pH, organic solvents and hydrolysing dintriles to chiral compounds which may enhance the possibilities for creating specific enzymes for biotransformation.
Collapse
|