1
|
Zhou S, Pan B, Kuang X, Chen S, Liu L, Song Y, Zhao Y, Xu X, Cheng X, Yang J. Characterization and mechanism investigation of salt-activated methionine sulfoxide reductase A from halophiles. iScience 2024; 27:110806. [PMID: 39297162 PMCID: PMC11408995 DOI: 10.1016/j.isci.2024.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Halophiles, thriving in harsh saline environments, capture scientific interest due to their remarkable ability to prosper under extreme salinity. This study unveils the distinct salt-induced activation of methionine sulfoxide reductases (MsrA) from Halobacterium hubeiense, showcasing a significant enhancement in enzymatic activity across various salt concentrations ranging from 0.5 to 3.5 M. This contrasts sharply with the activity profiles of non-halophilic counterparts. Through comprehensive molecular dynamics simulations, we demonstrate that salt ions stabilize and compact the enzyme's structure, notably enhancing its substrate affinity. Mutagenesis analysis further confirms the essential role of salt bridges formed by the basic Arg168 residue in salt-induced activation. Mutating Arg168 to an acidic or neutral residue disrupts salt-induced activation, substantially reducing the enzyme activity under salt conditions. Our research provides evidence of salt-activated MsrA activity in halophiles, elucidating the molecular basis of halophilic enzyme activity in response to salts.
Collapse
Affiliation(s)
- Shihuan Zhou
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoxue Kuang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuhong Chen
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Lianghui Liu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yawen Song
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yuyan Zhao
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xianlin Xu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoling Cheng
- Department of Cell Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| |
Collapse
|
2
|
Tian J, Zhou S, Chen Y, Zhao Y, Li S, Yang P, Xu X, Chen Y, Cheng X, Yang J. Synthesis of Chiral Sulfoxides by A Cyclic Oxidation-Reduction Multi-Enzymatic Cascade Biocatalysis. Chemistry 2024; 30:e202304081. [PMID: 38288909 DOI: 10.1002/chem.202304081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.
Collapse
Affiliation(s)
- Jin Tian
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yanli Chen
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yuyan Zhao
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Piao Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xianlin Xu
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi City, Guizhou Province, P. R. China
| |
Collapse
|
3
|
Zhang Q, Pan B, Yang P, Tian J, Zhou S, Xu X, Dai Y, Cheng X, Chen Y, Yang J. Engineering of methionine sulfoxide reductase A with simultaneously improved stability and activity for kinetic resolution of chiral sulfoxides. Int J Biol Macromol 2024; 260:129540. [PMID: 38244733 DOI: 10.1016/j.ijbiomac.2024.129540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Methionine sulfoxide reductase A (MsrA) has emerged as promising biocatalysts in the enantioselective kinetic resolution of racemic (rac) sulfoxides. In this study, we engineered robust MsrA variants through directed evolution, demonstrating substantial improvements of thermostability. Mechanism analysis reveals that the enhanced thermostability results from the strengthening of intracellular interactions and increase in molecular compactness. Moreover, these variants demonstrated concurrent improvements in catalytic activities, and notably, these enhancements in stability and activity collectively contributed to a significant improvement in enzyme substrate tolerance. We achieved kinetic resolution on a series of rac-sulfoxides with high enantioselectivity under initial substrate concentrations reaching up to 93.0 g/L, representing a great improvement in the aspect of the substrate concentration for biocatalytic preparation of chiral sulfoxide. Hence, the simultaneously improved thermostability, activity and substrate tolerance of MsrA represent an excellent biocatalyst for the green synthesis of optically pure sulfoxides.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Piao Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jin Tian
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shihuan Zhou
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xianlin Xu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yangxue Dai
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoling Cheng
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| |
Collapse
|
4
|
Anselmi S, Carvalho ATP, Serrano-Sanchez A, Ortega-Roldan JL, Caswell J, Omar I, Perez-Ortiz G, Barry SM, Moody TS, Castagnolo D. Discovery and Rational Mutagenesis of Methionine Sulfoxide Reductase Biocatalysts To Expand the Substrate Scope of the Kinetic Resolution of Chiral Sulfoxides. ACS Catal 2023; 13:4742-4751. [PMID: 37066047 PMCID: PMC10088026 DOI: 10.1021/acscatal.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Indexed: 04/18/2023]
Abstract
Methionine sulfoxide reductase A (MsrA) enzymes have recently found applications as nonoxidative biocatalysts in the enantioselective kinetic resolution of racemic sulfoxides. This work describes the identification of selective and robust MsrA biocatalysts able to catalyze the enantioselective reduction of a variety of aromatic and aliphatic chiral sulfoxides at 8-64 mM concentration with high yields and excellent ees (up to 99%). Moreover, with the aim to expand the substrate scope of MsrA biocatalysts, a library of mutant enzymes has been designed via rational mutagenesis utilizing in silico docking, molecular dynamics, and structural nuclear magnetic resonance (NMR) studies. The mutant enzyme MsrA33 was found to catalyze the kinetic resolution of bulky sulfoxide substrates bearing non-methyl substituents on the sulfur atom with ees up to 99%, overcoming a significant limitation of the currently available MsrA biocatalysts.
Collapse
Affiliation(s)
- Silvia Anselmi
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
| | - Alexandra T. P. Carvalho
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
| | | | | | - Jill Caswell
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
| | - Iman Omar
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Gustavo Perez-Ortiz
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Sarah M. Barry
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Thomas S. Moody
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
- Arran
Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone,
Co., Roscommon N37 DN24, Ireland
| | - Daniele Castagnolo
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
| |
Collapse
|
5
|
Peng T, Tian J, Zhao Y, Jiang X, Cheng X, Deng G, Zhang Q, Wang Z, Yang J, Chen Y. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tao Peng
- Zunyi Medical University Department of Biochemistry CHINA
| | - Jin Tian
- Zunyi Medical University Department of Biochemistry CHINA
| | - Yuyan Zhao
- Zunyi Medical University Department of Biochemistry CHINA
| | - Xu Jiang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Xiaoling Cheng
- Zunyi Medical University Department of Biochemistry CHINA
| | - Guozhong Deng
- Zunyi Medical University Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province CHINA
| | - Quan Zhang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Zhongqiang Wang
- Zunyi Medical University Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province CHINA
| | - Jiawei Yang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Yongzheng Chen
- Zunyi Medical University School of Pharmacy 6#, Xuefu West Road,Zunyi, Guizhou,P.R. China 563000 Zunyi CHINA
| |
Collapse
|
6
|
Peng T, Tian J, Zhao Y, Jiang X, Cheng X, Deng G, Zhang Q, Wang Z, Yang J, Chen Y. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides. Angew Chem Int Ed Engl 2022; 61:e202209272. [PMID: 35831972 DOI: 10.1002/anie.202209272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Optically pure sulfoxides are noteworthy compounds applied in a wide range of industrial fields; however, the biocatalytic deracemization of racemic sulfoxides is challenging. Herein, a high-enantioselective methionine sulfoxide reductase A (MsrA) was combined with a low-enantioselective styrene monooxygenase (SMO) for the cyclic deracemization of sulfoxides. Enantiopure sulfoxides were obtained in >90% yield and with >90% enantiomeric excess ( ee ) through dynamic "selective reduction and non-selective oxidation" cycles. The cofactors of MsrA and SMO were subsequently regenerated by the cascade catalysis of three auxiliary enzymes through the consumption of low-cost D-glucose. Moreover, this "one-pot, one-step" cyclic deracemization strategy exhibited a wide substrate scope toward various aromatic, heteroaromatic, alkyl and thio-alkyl sulfoxides. This system proposed an efficient strategy for the green synthesis of chiral sulfoxide .
Collapse
Affiliation(s)
- Tao Peng
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Jin Tian
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Yuyan Zhao
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Xu Jiang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Xiaoling Cheng
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Guozhong Deng
- Zunyi Medical University, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, CHINA
| | - Quan Zhang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Zhongqiang Wang
- Zunyi Medical University, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, CHINA
| | - Jiawei Yang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Yongzheng Chen
- Zunyi Medical University, School of Pharmacy, 6#, Xuefu West Road,Zunyi, Guizhou,P.R. China, 563000, Zunyi, CHINA
| |
Collapse
|
7
|
Monooxygenase- and Dioxygenase-Catalyzed Oxidative Dearomatization of Thiophenes by Sulfoxidation, cis-Dihydroxylation and Epoxidation. Int J Mol Sci 2022; 23:ijms23020909. [PMID: 35055091 PMCID: PMC8777831 DOI: 10.3390/ijms23020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymatic oxidations of thiophenes, including thiophene-containing drugs, are important for biodesulfurization of crude oil and drug metabolism of mono- and poly-cyclic thiophenes. Thiophene oxidative dearomatization pathways involve reactive metabolites, whose detection is important in the pharmaceutical industry, and are catalyzed by monooxygenase (sulfoxidation, epoxidation) and dioxygenase (sulfoxidation, dihydroxylation) enzymes. Sulfoxide and epoxide metabolites of thiophene substrates are often unstable, and, while cis-dihydrodiol metabolites are more stable, significant challenges are presented by both types of metabolite. Prediction of the structure, relative and absolute configuration, and enantiopurity of chiral metabolites obtained from thiophene enzymatic oxidation depends on the substrate, type of oxygenase selected, and molecular docking results. The racemization and dimerization of sulfoxides, cis/trans epimerization of dihydrodiol metabolites, and aromatization of epoxides are all factors associated with the mono- and di-oxygenase-catalyzed metabolism of thiophenes and thiophene-containing drugs and their applications in chemoenzymatic synthesis and medicine.
Collapse
|
8
|
Peng T, Cheng X, Chen Y, Yang J. Sulfoxide Reductases and Applications in Biocatalytic Preparation of Chiral Sulfoxides: A Mini-Review. Front Chem 2021; 9:714899. [PMID: 34490206 PMCID: PMC8417374 DOI: 10.3389/fchem.2021.714899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022] Open
Abstract
Chiral sulfoxides are valuable organosulfur compounds that have been widely used in medicinal and organic synthesis. Biocatalytic approaches for preparing chiral sulfoxides were developed in the past few years, mainly through asymmetric oxidation of prochiral sulfides. Recently, the application of sulfoxide reductase to prepare chiral sulfoxides through kinetic resolution has emerged as a new method, exhibiting extraordinary catalytic properties. This article reviews the chemical and biological functions of these sulfoxide reductases and highlights their applications in chiral sulfoxide preparation.
Collapse
Affiliation(s)
- Tao Peng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, China.,Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Anselmi S, Aggarwal N, Moody TS, Castagnolo D. Unconventional Biocatalytic Approaches to the Synthesis of Chiral Sulfoxides. Chembiochem 2021; 22:298-307. [PMID: 32735057 PMCID: PMC7891444 DOI: 10.1002/cbic.202000430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Indexed: 01/25/2023]
Abstract
Sulfoxides are a class of organic compounds that find wide application in medicinal and organic chemistry. Several biocatalytic approaches have been developed to synthesise enantioenriched sulfoxides, mainly by exploiting oxidative enzymes. Recently, the use of reductive enzymes such as Msr and Dms has emerged as a new, alternative method to obtain enantiopure sulfoxides from racemic mixtures. In parallel, novel oxidative approaches, employing nonclassical solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs), have been developed as greener and more sustainable biocatalytic synthetic pathways. This minireview aims highlights the recent advances made in the biocatalytic synthesis of enantioenriched sulfoxides by employing such unconventional approaches.
Collapse
Affiliation(s)
- Silvia Anselmi
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Nandini Aggarwal
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Thomas S. Moody
- Almac Sciences20 Seagoe Industrial EstateCraigavonBT63 5QDUK
- Arran Chemical Company LimitedUnit 1 Monksland Industrial Estate, Athlone, Co.RoscommonN37 DN24Ireland
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| |
Collapse
|
10
|
Wojaczyńska E, Wojaczyński J. Modern Stereoselective Synthesis of Chiral Sulfinyl Compounds. Chem Rev 2020; 120:4578-4611. [PMID: 32347719 PMCID: PMC7588045 DOI: 10.1021/acs.chemrev.0c00002] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 12/22/2022]
Abstract
Chiral sulfinyl compounds, sulfoxides, sulfoximines, sulfinamides, and other derivatives, play an important role in asymmetric synthesis as versatile auxiliaries, ligands, and catalysts. They are also recognized as pharmacophores found in already marketed and well-sold drugs (e.g., esomeprazole) and used in drug design. This review is devoted to the modern methods of preparation of sulfinyl derivatives in enantiopure or enantiomerically enriched form. Selected new approaches leading to racemic products for which the asymmetric variant can be developed in the future are mentioned as well.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego
27, 50 370 Wrocław, Poland
| | - Jacek Wojaczyński
- Faculty
of Chemistry, University of Wrocław 14 F. Joliot-Curie St., 50 383 Wrocław, Poland
| |
Collapse
|
11
|
Discovery and application of methionine sulfoxide reductase B for preparation of (S)-sulfoxides through kinetic resolution. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Yang J, Wen Y, Peng L, Chen Y, Cheng X, Chen Y. Identification of MsrA homologues for the preparation of (R)-sulfoxides at high substrate concentrations. Org Biomol Chem 2019; 17:3381-3388. [PMID: 30860233 DOI: 10.1039/c9ob00384c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Here we report a methionine sulfoxide reductase A (MsrA) homologue with extremely high substrate tolerance and a wide substrate scope for the biocatalytic preparation of enantiopure sulfoxides. This MsrA homologue which was obtained from Pseudomonas alcaliphila (named paMsrA) showed good activity and enantioselectivity towards a series of aryl methyl/ethyl sulfoxides 1a-1k, with electron-withdrawing or electron-donating substituents at the aromatic ring. Chiral sulfoxides in the R configuration were prepared with approximately 50% of yield and up to 99% enantiomeric excess through the asymmetric reductive resolution of racemic sulfoxide catalyzed by the recombinant paMsrA protein. More importantly, kinetic resolution has been successfully accomplished with high enantioselectivity (E > 200) at initial substrate concentrations up to 320 mM (approximately 45 g L-1), which represents a great improvement in the aspect of the substrate concentration for the biocatalytic preparation of chiral sulfoxides.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi 563000, Guizhou province, P.R. China
| | | | | | | | | | | |
Collapse
|
13
|
Peng L, Wen Y, Chen Y, Yuan Z, Zhou Y, Cheng X, Chen Y, Yang J. Biocatalytic Preparation of Chiral Sulfoxides through Asymmetric Reductive Resolution by Methionine Sulfoxide Reductase A. ChemCatChem 2018. [DOI: 10.1002/cctc.201800279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Liaotian Peng
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yuanmei Wen
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yu Chen
- Generic Drug Research Centre of Guizhou Province, Green Pharmaceuticals Engineering, Research Centre of Guizhou Province; School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Zhimei Yuan
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yang Zhou
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Xiaoling Cheng
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yongzheng Chen
- Generic Drug Research Centre of Guizhou Province, Green Pharmaceuticals Engineering, Research Centre of Guizhou Province; School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Jiawei Yang
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| |
Collapse
|