1
|
Zhou HY, Chen Q, Zhang YF, Chen DD, Yi XN, Chen DS, Cheng XP, Li M, Wang HY, Chen KQ, Liu ZQ, Zheng YG. Improving the catalytic activity of β-glucosidase from Coniophora puteana via semi-rational design for efficient biomass cellulose degradation. Enzyme Microb Technol 2023; 164:110188. [PMID: 36584665 DOI: 10.1016/j.enzmictec.2022.110188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In order to improve the degradation activity of β-glucosidase (CpBgl) from Coniophora puteana, the structural modification was conducted. The enzyme activity of mutants CpBgl-Q20C and CpBgl-A240S was increased by 65.75% and 58.58%, respectively. These mutants exhibited maximum activity under the same conditions as wild-type CpBgl (65 ℃ and pH 5.0), slightly improved stabilities compared that of the wild-type, and remarkably enhanced activities in the presence of Mn2+ or Fe2+. The Vmax of CpBgl-Q20C and CpBgl-A240S was increased to 138.18 and 125.14 μmol/mg/min, respectively, from 81.34 μmol/mg/min of the wild-type, and the catalysis efficiency (kcat/Km) of CpBgl-Q20C (335.79 min-1/mM) and CpBgl-A240S (281.51 min-1/mM) was significantly improved compared with that of the wild-type (149.12 min-1/mM). When the mutant CpBgl-Q20C were used in the practical degradation of different biomasses, the glucose yields of filter paper, corncob residue, and fungi mycelia residue were increased by 17.68%, 25.10%, and 20.37%, respectively. The spatial locations of the mutation residues in the architecture of CpBgl and their unique roles in the enzyme-substrate binding and catalytic efficiency were probed in this work. These results laid a foundation for evolution of other glycoside hydrolases and the industrial bio-degradation of cellulosic biomass in nature.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qi Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yi-Feng Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dou-Dou Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao-Nan Yi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - De-Shui Chen
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Xin-Ping Cheng
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Kai-Qian Chen
- Zhejiang Huakang Pharmaceutical Co., LTD., 18 Huagong Road, Huabu Town, Kaihua 324302, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
2
|
Dušeková E, Garajová K, Yavaşer R, Tomková M, Sedláková D, Dzurillová V, Kulik N, Fadaei F, Shaposhnikova A, Minofar B, Sedlák E. Modulation of global stability, ligand binding and catalytic properties of trypsin by anions. Biophys Chem 2022; 288:106856. [PMID: 35872468 DOI: 10.1016/j.bpc.2022.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Specific salts effect is well-known on stability and solubility of proteins, however, relatively limited knowledge is known regarding the effect on catalytic properties of enzymes. Here, we examined the effect of four sodium anions on thermal stability and catalytic properties of trypsin and binding of the fluorescent probe, p-aminobenzamidine (PAB), to the enzyme. We show that the specific anions effect on trypsin properties agrees with the localization of the anions in the Hofmeister series. Thermal stability of trypsin, Tm, the affinity of the fluorescent probe to the binding site, Kd, and the rate constant, kcat, of trypsin-catalyzed hydrolysis of the substrate N-benzoyl-L-arginine ethyl ester (BAEE) increase with increasing kosmotropic character of anions in the order: perchlorate<bromide<chloride<sulfate, while the value of Michaelis constant, KM, decreases. Correlations between the values of Tm, Kd for PAB, kcat, and KM for BAEE in the presence of 1 M studied salts suggest interrelation among these parameters of the enzyme. Global stabilization as well as increased rigidity of trypsin is accompanied by strengthening of interaction with fluorescent probe PAB and in accordance with decreasing values of KM for the substrate BAEE. Strong correlations between parameters characterizing the trypsin properties with the charge densities of anions clearly indicate direct electrostatic interaction as a basis of the specific anion effect on the conformational and functional properties of the enzyme.
Collapse
Affiliation(s)
- Eva Dušeková
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Katarína Garajová
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia
| | - Rukiye Yavaşer
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia; Chemistry Department, Faculty of Arts and Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Mária Tomková
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Veronika Dzurillová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Natalia Kulik
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic
| | - Fatemeh Fadaei
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic; Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic
| | - Anastasiia Shaposhnikova
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1645/31A, 37005 České Budějovice, Czech Republic; Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic
| | - Babak Minofar
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, 37333 Nové Hrady, Czech Republic.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia.
| |
Collapse
|
3
|
Nakauchi Y, Nishinami S, Murakami Y, Ogura T, Kano H, Shiraki K. Opalescence Arising from Network Assembly in Antibody Solution. Mol Pharm 2022; 19:1160-1167. [PMID: 35274955 DOI: 10.1021/acs.molpharmaceut.1c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opalescence of therapeutic antibody solutions is one of the concerns in drug formulation. However, the mechanistic insights into the opalescence of antibody solutions remain unclear. Here, we investigated the assembly states of antibody molecules as a function of antibody concentration. The solutions of bovine gamma globulin and human immunoglobulin G at around 100 mg/mL showed the formation of submicron-scale network assemblies. The network assembly resulted in the appearance of opalescence with a transparent blue color without the precipitates of antibodies. Furthermore, the addition of trehalose and arginine, previously known to act as protein stabilizers and protein aggregation suppressors, was able to suppress the opalescence arising from the network assembly. These results will provide an important information for evaluating and improving protein formulations.
Collapse
Affiliation(s)
- Yoshitaka Nakauchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Hideaki Kano
- Department of Chemistry, Kyusyu University, 744, Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| |
Collapse
|
4
|
Enhanced activity and stability of protein-glutaminase by Hofmeister effects. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Gault S, Cockell CS. Perchlorate Salts Exert a Dominant, Deleterious Effect on the Structure, Stability, and Activity of α-Chymotrypsin. ASTROBIOLOGY 2021; 21:405-412. [PMID: 33784200 DOI: 10.1089/ast.2020.2223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of perchlorate ions on Mars raises the question of how these ions influence the biochemistry of any contaminant life introduced into the martian environment, or what selection pressures perchlorate ions exert on any environment that contains these ions, such as the Atacama Desert. In this study, we investigated the structure, stability, and enzyme activity of the model enzyme α-chymotrypsin in the presence of five Mars relevant salts, MgSO4, MgCl2, Mg(ClO4)2, Ca(ClO4)2, and NaClO4. We found that all the perchlorate salts reduced the enzyme activity of α-chymotrypsin in a concentration-dependent manner, with Mg(ClO4)2 and Ca(ClO4)2 having the greatest effect. This observation extends to our structural studies, which show that 1 M Mg(ClO4)2 and Ca(ClO4)2 greatly alter the tertiary structural environment of α-chymotrypsin. We also found that all the perchlorate salts assayed reduced the melting temperature of α-chymotrypsin, whereas the sulfate and chloride salts were able to increase the protein melting temperature. We also demonstrated that a brine containing both perchlorate and sulfate ions exerts the same deleterious effects on α-chymotrypsin's melting temperature and enzyme activity as that of a perchlorate-only brine. This suggests that the perchlorate salts exert a dominant, deleterious effect on protein biochemistry. These results indicate that although perchlorate salts are beneficial to the presence of liquid water due to low eutectic points, they also hamper the habitability of their own environment. Life in such brines would, therefore, have to adapt its cellular machinery to the perchlorate ion's presence or find a way of excluding it from said machinery.
Collapse
Affiliation(s)
- Stewart Gault
- Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S Cockell
- Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Mao Y, Fan R, Li R, Ye X, Kulozik U. Flow-through enzymatic reactors using polymer monoliths: From motivation to application. Electrophoresis 2020; 42:2599-2614. [PMID: 33314167 DOI: 10.1002/elps.202000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022]
Abstract
The application of monolithic materials as carriers for enzymes has rapidly expanded to the realization of flow-through analysis and bioconversion processes. This expansion is partly attributed to the absence from diffusion limitation in many monoliths-based enzyme reactors. Particularly, the relatively ease of introducing functional groups renders polymer monoliths attractive as enzyme carriers. After summarizing the motivation to develop enzymatic reactors using polymer monoliths, this review reports the most recent applications of such reactors. Besides, the present review focuses on the crucial characteristics of polymer monoliths affecting the immobilization of enzymes and the processing parameters dictating the performance of the resulting enzymatic reactors. This review is intended to provide a guideline for designing and applying flow-through enzymatic reactors using polymer monoliths.
Collapse
Affiliation(s)
- Yuhong Mao
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Renkuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
7
|
Koebke KJ, Alfaro VS, Pinter TBJ, Deb A, Lehnert N, Tard C, Penner-Hahn JE, Pecoraro VL. Traversing the Red-Green-Blue Color Spectrum in Rationally Designed Cupredoxins. J Am Chem Soc 2020; 142:15282-15294. [PMID: 32786767 DOI: 10.1021/jacs.0c04757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blue copper proteins have a constrained Cu(II) geometry that has proven difficult to recapitulate outside native cupredoxin folds. Previous work has successfully designed green copper proteins which could be tuned blue using exogenous ligands, but the question of how one can create a self-contained blue copper site within a de novo scaffold, especially one removed from a cupredoxin fold, remained. We have recently reported a red copper protein site within a three helical bundle scaffold which we later revisited and determined to be a nitrosocyanin mimic, with a CuHis2CysGlu binding site. We now report efforts to rationally design this construct toward either green or blue copper chromophores using mutation strategies that have proven successful in native cupredoxins. By rotating the metal binding site, we created a de novo green copper protein. This in turn was converted to a blue copper protein by removing an axial methionine. Following this rational sequence, we have successfully created red, green, and blue copper proteins within an alpha helical fold, enabling comparisons for the first time of their structure and function disconnected from the overall cupredoxin fold.
Collapse
Affiliation(s)
- Karl J Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor Sosa Alfaro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tyler B J Pinter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cédric Tard
- LCM, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Gabriele F, Goracci L, Germani R, Spreti N. Refining the model to design α-chymotrypsin superactivators: the role of the binding mode of quaternary ammonium salts. NEW J CHEM 2020. [DOI: 10.1039/d0nj04676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modelling, synthesis and kinetic studies were combined to investigate the interactions responsible for the superactivation of α-chymotrypsin by ammonium-based additives.
Collapse
Affiliation(s)
- Francesco Gabriele
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| | - Laura Goracci
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- Perugia
- Italy
| | - Raimondo Germani
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- Perugia
- Italy
| | - Nicoletta Spreti
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| |
Collapse
|
9
|
|
10
|
Dušeková E, Garajová K, Yavaşer R, Varhač R, Sedlák E. Hofmeister effect on catalytic properties of chymotrypsin is substrate-dependent. Biophys Chem 2018; 243:8-16. [DOI: 10.1016/j.bpc.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022]
|
11
|
Ferreira EA, Rodezno SVA, Omori ÁT, Cunha RLOR. A study on the enzyme catalysed enantioselective hydrolysis of methyl 2-methyl-4-oxopentanoate, a precursor of chiral γ-butyrolactones. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1502274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Edgard A. Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brasil
- Escola de Engenharia, Universidade Presbiteriana Mackenzie, São Paulo, Brasil
| | - Sindy V. A. Rodezno
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brasil
| | - Álvaro T. Omori
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brasil
| | | |
Collapse
|
12
|
J. Thiele M, Davari MD, König M, Hofmann I, Junker NO, Mirzaei Garakani T, Vojcic L, Fitter J, Schwaneberg U. Enzyme–Polyelectrolyte Complexes Boost the Catalytic Performance of Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02935] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Martin J. Thiele
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Melanie König
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Isabell Hofmann
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Niklas O. Junker
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany
| | | | - Ljubica Vojcic
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- Codexis, Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Jörg Fitter
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany
- Institute of Complex Systems (ICS-5): Molecular Biophysics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany
| |
Collapse
|
13
|
Endo A, Kurinomaru T, Shiraki K. Hyperactivation of serine proteases by the Hofmeister effect. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|