1
|
Small molecule targeting of PTPs in cancer. Int J Biochem Cell Biol 2017; 96:171-181. [PMID: 28943273 DOI: 10.1016/j.biocel.2017.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023]
Abstract
Protein tyrosine phosphatases (PTPs) undeniably have a central role in the development and progression of human cancers. Historically, however, PTPs have not been viewed as privileged drug targets, and progress on identifying potent, selective, and cell-active small molecule PTP inhibitors has suffered accordingly. This situation is rapidly changing, however, due to biochemical advances in the study of PTPs and recent small molecule screening campaigns, which have identified potent and mechanistically diverse lead structures. These compounds are facilitating the exploration of the fundamental cellular processes controlled by PTPs in cancers, and could form the inflection point for new therapeutic paradigms for the treatment of a range of cancers. Herein, we review recent advances in the discovery and biological annotation of cancer-relevant small molecule PTP inhibitors.
Collapse
|
2
|
Voisin S, Almén MS, Zheleznyakova GY, Lundberg L, Zarei S, Castillo S, Eriksson FE, Nilsson EK, Blüher M, Böttcher Y, Kovacs P, Klovins J, Rask-Andersen M, Schiöth HB. Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Med 2015; 7:103. [PMID: 26449484 PMCID: PMC4599317 DOI: 10.1186/s13073-015-0225-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/21/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles. METHODS We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121-133) and an additional dataset in subcutaneous and visceral fat (n = 149). RESULTS We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts. CONCLUSIONS Our results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits.
Collapse
Affiliation(s)
- Sarah Voisin
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Markus Sällman Almén
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Galina Y Zheleznyakova
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Lina Lundberg
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Sanaz Zarei
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Sandra Castillo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Fia Ence Eriksson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Emil K Nilsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Matthias Blüher
- Medical Faculty, IFB Adiposity Diseases, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany.
| | - Yvonne Böttcher
- Medical Faculty, IFB Adiposity Diseases, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany.
| | - Peter Kovacs
- Medical Faculty, IFB Adiposity Diseases, University of Leipzig, Liebigstrasse 21, 04103, Leipzig, Germany.
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Ratsupites 1, Riga, LV-1067, Latvia.
| | - Mathias Rask-Andersen
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
PTP-central: a comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods 2013; 65:156-64. [PMID: 23911837 DOI: 10.1016/j.ymeth.2013.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 12/28/2022] Open
Abstract
Reversible tyrosine phosphorylation is a fundamental signaling mechanism controlling a diversity of cellular processes. Whereas protein tyrosine kinases have long been implicated in many diseases, aberrant protein tyrosine phosphatase (PTP) activity is also increasingly being associated with a wide spectrum of conditions. PTPs are now regarded as key regulators of biochemical processes instead of simple "off" switches operating in tyrosine kinase signaling pathways. Despite the central importance that PTPs play in the cell's biochemistry, the tyrosine phosphatomes of most species remain uncharted. Here we present a highly sensitive and specific sequence-based method for the automatic classification of PTPs. As proof of principle we re-annotated the human tyrosine phosphatome, and discovered four new PTP genes that had not been reported before. Our method and the predicted tyrosine phosphatomes of 65 eukaryotic genomes are accessible online through the user-friendly PTP-central resource (http://www.PTP-central.org/), where users can also submit their own sequences for prediction. PTP-central is a comprehensive and continually developing resource that currently integrates the predicted tyrosine phosphatomes with structural data and genetic association disease studies, as well as homology relationships. PTP-central thus fills an important void for the systematic study of PTPs, both in model organisms and from an evolutionary perspective.
Collapse
|
4
|
Abstract
Cardiolipin, a phospholipid component of the inner mitochondrial membrane, is required for mitochondrial metabolism. In this issue, Zhang et al. (2011) highlight a critical role for PTPMT1, a mitochondrial phosphatase, in cardiolipin biogenesis and possibly in cardiolipin deficiency diseases. Their findings also unveil a yet uncharacterized pathway affecting cell growth.
Collapse
Affiliation(s)
- Karim El-Kouhen
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|