1
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
2
|
U7 deciphered: the mechanism that forms the unusual 3' end of metazoan replication-dependent histone mRNAs. Biochem Soc Trans 2021; 49:2229-2240. [PMID: 34351387 DOI: 10.1042/bst20210323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.
Collapse
|
3
|
Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol 2018; 7:rsob.170073. [PMID: 28615474 PMCID: PMC5493778 DOI: 10.1098/rsob.170073] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Ogorodnikov A, Kargapolova Y, Danckwardt S. Processing and transcriptome expansion at the mRNA 3' end in health and disease: finding the right end. Pflugers Arch 2016; 468:993-1012. [PMID: 27220521 PMCID: PMC4893057 DOI: 10.1007/s00424-016-1828-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
The human transcriptome is highly dynamic, with each cell type, tissue, and organ system expressing an ensemble of transcript isoforms that give rise to considerable diversity. Apart from alternative splicing affecting the "body" of the transcripts, extensive transcriptome diversification occurs at the 3' end. Transcripts differing at the 3' end can have profound physiological effects by encoding proteins with distinct functions or regulatory properties or by affecting the mRNA fate via the inclusion or exclusion of regulatory elements (such as miRNA or protein binding sites). Importantly, the dynamic regulation at the 3' end is associated with various (patho)physiological processes, including the immune regulation but also tumorigenesis. Here, we recapitulate the mechanisms of constitutive mRNA 3' end processing and review the current understanding of the dynamically regulated diversity at the transcriptome 3' end. We illustrate the medical importance by presenting examples that are associated with perturbations of this process and indicate resulting implications for molecular diagnostics as well as potentially arising novel therapeutic strategies.
Collapse
Affiliation(s)
- Anton Ogorodnikov
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
| | - Yulia Kargapolova
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Fong N, Brannan K, Erickson B, Kim H, Cortazar MA, Sheridan RM, Nguyen T, Karp S, Bentley DL. Effects of Transcription Elongation Rate and Xrn2 Exonuclease Activity on RNA Polymerase II Termination Suggest Widespread Kinetic Competition. Mol Cell 2016; 60:256-67. [PMID: 26474067 DOI: 10.1016/j.molcel.2015.09.026] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023]
Abstract
The torpedo model of transcription termination asserts that the exonuclease Xrn2 attacks the 5'PO4-end exposed by nascent RNA cleavage and chases down the RNA polymerase. We tested this mechanism using a dominant-negative human Xrn2 mutant and found that it delayed termination genome-wide. Xrn2 nuclease inactivation caused strong termination defects downstream of most poly(A) sites and modest delays at some histone and U snRNA genes, suggesting that the torpedo mechanism is not limited to poly(A) site-dependent termination. A central untested feature of the torpedo model is that there is kinetic competition between the exonuclease and the pol II elongation complex. Using pol II rate mutants, we found that slow transcription robustly shifts termination upstream, and fast elongation extends the zone of termination further downstream. These results suggest that kinetic competition between elongating pol II and the Xrn2 exonuclease is integral to termination of transcription on most human genes.
Collapse
Affiliation(s)
- Nova Fong
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Kristopher Brannan
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Benjamin Erickson
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Tram Nguyen
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Shai Karp
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Abstract
One of the most amazing findings in molecular biology was the discovery that eukaryotic genes are discontinuous, with coding DNA being interrupted by stretches of non-coding sequence. The subsequent realization that the intervening regions are removed from pre-mRNA transcripts via the activity of a common set of small nuclear RNAs (snRNAs), which assemble together with associated proteins into a complex known as the spliceosome, was equally surprising. How do cells coordinate the assembly of this molecular machine? And how does the spliceosome accurately recognize exons and introns to carry out the splicing reaction? Insights into these questions have been gained by studying the life cycle of spliceosomal snRNAs from their transcription, nuclear export and re-import to their dynamic assembly into the spliceosome. This assembly process can also affect the regulation of alternative splicing and has implications for human disease.
Collapse
Affiliation(s)
- A Gregory Matera
- Department of Biology, Department of Genetics and Integrative Program for Biological and Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Zefeng Wang
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
7
|
Xie M, Li M, Vilborg A, Lee N, Shu MD, Yartseva V, Šestan N, Steitz JA. Mammalian 5'-capped microRNA precursors that generate a single microRNA. Cell 2013; 155:1568-80. [PMID: 24360278 PMCID: PMC3899828 DOI: 10.1016/j.cell.2013.11.027] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/30/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are short RNA gene regulators typically produced from primary transcripts that are cleaved by the nuclear microprocessor complex, with the resulting precursor miRNA hairpins exported by exportin 5 and processed by cytoplasmic Dicer to yield two (5p and 3p) miRNAs. Here, we document microprocessor-independent 7-methylguanosine (m(7)G)-capped pre-miRNAs, whose 5' ends coincide with transcription start sites and 3' ends are most likely generated by transcription termination. By establishing a small RNA Cap-seq method that employs the cap-binding protein eIF4E, we identified a group of murine m(7)G-capped pre-miRNAs genome wide. The m(7)G-capped pre-miRNAs are exported via the PHAX-exportin 1 pathway. After Dicer cleavage, only the 3p-miRNA is efficiently loaded onto Argonaute to form a functional microRNP. This unusual miRNA biogenesis pathway, which differs in pre-miRNA synthesis, nuclear-cytoplasmic transport, and guide strand selection, enables the development of shRNA expression constructs that produce a single 3p-siRNA.
Collapse
Affiliation(s)
- Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Mingfeng Li
- Department of Neurobiology, Kavli Institute of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Anna Vilborg
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Nenad Šestan
- Department of Neurobiology, Kavli Institute of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
8
|
Ruepp MD, Schümperli D, Barabino SML. mRNA 3' end processing and more--multiple functions of mammalian cleavage factor I-68. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:79-91. [PMID: 21956970 DOI: 10.1002/wrna.35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The formation of defined 3(') ends is an important step in the biogenesis of mRNAs. In eukaryotic cells, all mRNA 3(') ends are generated by endonucleolytic cleavage of primary transcripts in reactions that are essentially posttranscriptional. Nevertheless, 3(') end formation is tightly connected to transcription in vivo, and a link with mRNA export to the cytoplasm has been postulated. Here, we briefly review the current knowledge about the two types of mRNA 3(') end processing reactions, cleavage/polyadenylation and histone RNA processing. We then focus on factors shared between these two reactions. In particular, we discuss evidence for new functions of the mammalian cleavage factor I subunit CF I(m) 68 in histone RNA 3(') processing and in the export of mature mRNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
9
|
Tian B, Graber JH. Signals for pre-mRNA cleavage and polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:385-96. [PMID: 22012871 DOI: 10.1002/wrna.116] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pre-mRNA cleavage and polyadenylation is an essential step for 3' end formation of almost all protein-coding transcripts in eukaryotes. The reaction, involving cleavage of nascent mRNA followed by addition of a polyadenylate or poly(A) tail, is controlled by cis-acting elements in the pre-mRNA surrounding the cleavage site. Experimental and bioinformatic studies in the past three decades have elucidated conserved and divergent elements across eukaryotes, from yeast to human. Here we review histories and current models of these elements in a broad range of species.
Collapse
Affiliation(s)
- Bin Tian
- UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | |
Collapse
|
10
|
Rajendra T, Praveen K, Matera AG. Genetic analysis of nuclear bodies: from nondeterministic chaos to deterministic order. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:365-74. [PMID: 21467138 PMCID: PMC4062921 DOI: 10.1101/sqb.2010.75.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eukaryotic nucleus is a congested place, and macromolecular crowding is thought to have an important role in increasing the relative concentrations of nuclear proteins, thereby accelerating the rates of biochemical reactions. Crowding is also thought to provide the environment needed for formation of nuclear bodies/subcompartments, such as the Cajal body (CB) and the histone locus body (HLB), via self-organization. In this chapter, we contrast the theories of stochastic self-organization and hierarchical self-organization in their application to nuclear body assembly, using CBs and HLBs as paradigms. Genetic ablation studies in Drosophila on components of CBs and HLBs have revealed an order to the assembly of these structures that is suggestive of a hierarchical model of self-organization. These studies also show that functions attributed to the nuclear bodies are largely unaffected in their absence, reinforcing an emerging theme in the field that the purpose of these subdomains may be to enhance the efficiency and specificity of reactions.
Collapse
Affiliation(s)
- T.K. Rajendra
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, NC 27599
| | - Kavita Praveen
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, NC 27599
| | - A. Gregory Matera
- Departments of Biology and Genetics, Program in Molecular Biology & Biotechnology, Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
11
|
A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3'-end formation. Mol Cell Biol 2010; 31:328-41. [PMID: 21078872 DOI: 10.1128/mcb.00943-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proper gene expression relies on a class of ubiquitously expressed, uridine-rich small nuclear RNAs (snRNAs) transcribed by RNA polymerase II (RNAPII). Vertebrate snRNAs are transcribed from a unique promoter, which is required for proper 3'-end formation, and cleavage of the nascent transcript involves the activity of a poorly understood set of proteins called the Integrator complex. To examine 3'-end formation in Drosophila melanogaster, we developed a cell-based reporter that monitors aberrant 3'-end formation of snRNA through the gain in expression of green fluorescent protein (GFP). We used this reporter in Drosophila S2 cells to determine requirements for U7 snRNA 3'-end formation and found that processing was strongly dependent upon nucleotides located within the 3' stem-loop as well as sequences likely to comprise the Drosophila equivalent of the vertebrate 3' box. Substitution of the actin promoter for the snRNA promoter abolished proper 3'-end formation, demonstrating the conserved requirement for an snRNA promoter in Drosophila. We tested the requirement for all Drosophila Integrator subunits and found that Integrators 1, 4, 9, and 11 were essential for 3'-end formation and that Integrators 3 and 10 may be dispensable for processing. Depletion of cleavage and polyadenylation factors or of histone pre-mRNA processing factors did not affect U7 snRNA processing efficiency, demonstrating that the Integrator complex does not share components with the mRNA 3'-end processing machinery. Finally, flies harboring mutations in either Integrator 4 or 7 fail to complete development and accumulate significant levels of misprocessed snRNA in the larval stages.
Collapse
|
12
|
Tomecki R, Dziembowski A. Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism. RNA (NEW YORK, N.Y.) 2010; 16:1692-1724. [PMID: 20675404 PMCID: PMC2924532 DOI: 10.1261/rna.2237610] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For a long time it has been assumed that the decay of RNA in eukaryotes is mainly carried out by exoribonucleases, which is in contrast to bacteria, where endoribonucleases are well documented to initiate RNA degradation. In recent years, several as yet unknown endonucleases have been described, which has changed our view on eukaryotic RNA metabolism. Most importantly, it was shown that the primary eukaryotic 3' --> 5' exonuclease, the exosome complex has the ability to endonucleolytically cleave its physiological RNA substrates, and novel endonucleases involved in both nuclear and cytoplasmic RNA surveillance pathways were discovered concurrently. In addition, endoribonucleases responsible for long-known processing steps in the maturation pathways of various RNA classes were recently identified. Moreover, one of the most intensely studied RNA decay pathways--RNAi--is controlled and stimulated by the action of different endonucleases. Furthermore, endoribonucleolytic cleavages executed by various enzymes are also the hallmark of RNA degradation and processing in plant chloroplasts. Finally, multiple context-specific endoribonucleases control qualitative and/or quantitative changes of selected transcripts under particular conditions in different eukaryotic organisms. The aim of this review is to discuss the impact of all of these discoveries on our current understanding of eukaryotic RNA metabolism.
Collapse
Affiliation(s)
- Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, University of Warsaw, 02-106 Warsaw, Poland
| | | |
Collapse
|
13
|
Dominski Z. The hunt for the 3' endonuclease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:325-40. [PMID: 21935893 DOI: 10.1002/wrna.33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pre-mRNAs are typically processed at the 3(') end by cleavage/polyadenylation. This is a two-step processing reaction initiated by endonucleolytic cleavage of pre-mRNAs downstream of the AAUAAA sequence or its variant, followed by extension of the newly generated 3(') end with a poly(A) tail. In metazoans, replication-dependent histone transcripts are cleaved by a different 3(') end processing mechanism that depends on the U7 small nuclear ribonucleoprotein and the polyadenylation step is omitted. Each of the two mechanisms occurs in a macromolecular assembly that primarily functions to juxtapose the scissile bond with the 3(') endonuclease. Remarkably, despite characterizing a number of processing factors, the identity of this most critical component remained elusive until recently. For cleavage coupled to polyadenylation, much needed help was offered by bioinformatics, which pointed to CPSF-73, a known processing factor required for both cleavage and polyadenylation, as the possible 3(') endonuclease. In silico structural analysis indicated that this protein is a member of the large metallo-β-lactamase family of hydrolytic enzymes and belongs to the β-CASP subfamily that includes several RNA and DNA-specific nucleases. Subsequent experimental studies supported the notion that CPSF-73 does function as the endonuclease in the formation of polyadenylated mRNAs, but some controversy still remains as a different cleavage and polyadenylation specificity factor (CPSF) subunit, CPSF-30, displays an endonuclease activity in vitro while recombinant CPSF-73 is inactive. Unexpectedly, CPSF-73 as the 3(') endonuclease in cleavage coupled to polyadenylation found a strong ally in U7-dependent processing of histone pre-mRNAs, which was shown to utilize the same protein as the cleaving enzyme. It thus seems likely that these two processing reactions evolved from a common mechanism, with CPSF-73 as the endonuclease.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Miyoshi K, Miyoshi T, Siomi H. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 2010; 284:95-103. [PMID: 20596726 DOI: 10.1007/s00438-010-0556-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/22/2010] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that collectively regulate the expression of a large number of mRNAs by either promoting destabilization or repressing translation, or both. Therefore, they play a major role in shaping the transcriptomes and proteomes of eukaryotic organisms. Typically, animal miRNAs are produced from long primary transcripts with one or more of hairpin structures by two sequential processing reactions: one by Drosha in the nucleus and the other by Dicer in the cytoplasm. However, deviations from this paradigm have been observed: subclasses of miRNAs, which only partially meet the classical definition of a miRNA, are derived by alternative biogenesis pathways, thereby providing an additional level of complexity to miRNA-dependent regulation of gene expression.
Collapse
Affiliation(s)
- Keita Miyoshi
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
15
|
Gérard MA, Myslinski E, Chylak N, Baudrey S, Krol A, Carbon P. The scaRNA2 is produced by an independent transcription unit and its processing is directed by the encoding region. Nucleic Acids Res 2010; 38:370-81. [PMID: 19906720 PMCID: PMC2811027 DOI: 10.1093/nar/gkp988] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/12/2009] [Accepted: 10/15/2009] [Indexed: 01/30/2023] Open
Abstract
The C/D box scaRNA2 is predicted to guide specific 2'-O-methylation of U2 snRNA. In contrast to other SCARNA genes, SCARNA2 appears to be independently transcribed. By transient expression of SCARNA2-reporter gene constructs, we have demonstrated that this gene is transcribed by RNA polymerase II and that the promoter elements responsible for its transcription are contained within a 161 bp region upstream of the transcription start site. In mammals, we have identified four cross species conserved promoter elements, a TATA motif, an hStaf/ZNF143 binding site and two novel elements that are required for full promoter activity. Binding of the human hStaf/ZNF143 transcription factor to its target sequence is required for promoter activity, suggesting that hStaf/ZNF143 is a fundamental regulator of the SCARNA2 gene. We also showed that RNA polymerase II continues transcription past the 3'-end of the mature RNA, irrespective of the identity of the Pol II promoter. The 3'-end processing and accumulation are governed by the sole information contained in the scaRNA2 encoding region, the maturation occurring via a particular pathway incompatible with that of mRNA or snRNA production.
Collapse
Affiliation(s)
| | | | | | | | | | - Philippe Carbon
- Architecture et Réactivité de l'A;RN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
16
|
Omberg L, Meyerson JR, Kobayashi K, Drury LS, Diffley JFX, Alter O. Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression. Mol Syst Biol 2009; 5:312. [PMID: 19888207 PMCID: PMC2779084 DOI: 10.1038/msb.2009.70] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/19/2009] [Indexed: 11/09/2022] Open
Abstract
This report provides a global view of how gene expression is affected by DNA replication. We analyzed synchronized cultures of Saccharomyces cerevisiae under conditions that prevent DNA replication initiation without delaying cell cycle progression. We use a higher-order singular value decomposition to integrate the global mRNA expression measured in the multiple time courses, detect and remove experimental artifacts and identify significant combinations of patterns of expression variation across the genes, time points and conditions. We find that, first, approximately 88% of the global mRNA expression is independent of DNA replication. Second, the requirement of DNA replication for efficient histone gene expression is independent of conditions that elicit DNA damage checkpoint responses. Third, origin licensing decreases the expression of genes with origins near their 3' ends, revealing that downstream origins can regulate the expression of upstream genes. This confirms previous predictions from mathematical modeling of a global causal coordination between DNA replication origin activity and mRNA expression, and shows that mathematical modeling of DNA microarray data can be used to correctly predict previously unknown biological modes of regulation.
Collapse
Affiliation(s)
- Larsson Omberg
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
17
|
Liu D, Fritz DT, Rogers MB, Shatkin AJ. Species-specific cis-regulatory elements in the 3'-untranslated region direct alternative polyadenylation of bone morphogenetic protein 2 mRNA. J Biol Chem 2008; 283:28010-9. [PMID: 18703506 PMCID: PMC2661379 DOI: 10.1074/jbc.m804895200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/30/2008] [Indexed: 01/12/2023] Open
Abstract
BMP2 (bone morphogenetic protein 2) is a multifunctional member of the transforming growth factor-beta family of growth factors. Disruption of BMP2 signaling results in developmental defects, cancers, and other diseases. BMP2 mRNAs are alternatively polyadenylated, resulting in mRNAs with distinct 3'-untranslated regions. The longer mRNA contains additional putative binding sites for post-transcriptional regulatory factors, including micro-RNAs. We combined functional assays with computational analyses of emerging genome data to define site- and species-specific polyadenylation determinants. In all mouse and human cell lines tested, shorter mRNAs resulting from using the first polyadenylation signal (PA1) were more abundant than mRNAs from the second signal (PA2). However, the PA1/PA2 usage ratios were 2-3-fold higher in human than in mouse cells. Expression of human BMP2 constructs in mouse cells and mouse constructs in human cells showed that cis-regulatory elements direct species-specific 3' processing of BMP2 transcripts. A 72-nucleotide region downstream of PA2 in the mouse sequence contains two novel cis-acting elements previously hypothesized to regulate polyadenylation in a bioinformatics analysis. Mutations that humanized the mouse-specific elements lowered the affinity for cleavage stimulation factor CstF64 and significantly weakened the PA2 signal relative to the PA1 signal. Thus, we have experimentally defined for the first time cis-regulatory elements that control a species-specific difference in the 3'-end processing of BMP2 and potentially of other genes.
Collapse
Affiliation(s)
- Donglin Liu
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
18
|
Tian B. Alternative Polyadenylation in the Human Genome: Evolution. ELS 2008. [DOI: 10.1002/9780470015902.a0020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N, Vuylsteke M, Schölkopf B, Rätsch G, Weigel D. At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 2008; 9:R112. [PMID: 18613972 PMCID: PMC2530869 DOI: 10.1186/gb-2008-9-7-r112] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/12/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage.
Collapse
Affiliation(s)
- Sascha Laubinger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstr, 37-39, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
3' end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 2008; 27:482-98. [PMID: 18256699 DOI: 10.1038/sj.emboj.7601932] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/24/2007] [Indexed: 12/27/2022] Open
Abstract
Recent advances in the understanding of the molecular mechanism of mRNA 3' end processing have uncovered a previously unanticipated integrated network of transcriptional and RNA-processing mechanisms. A variety of human diseases impressively reflect the importance of the precision of the complex 3' end-processing machinery and gene specific deregulation of 3' end processing can result from mutations of RNA sequence elements that bind key specific processing factors. Interestingly, more general deregulation of 3' end processing can be caused either by mutations of these processing factors or by the disturbance of the well-coordinated equilibrium between these factors. From a medical perspective, both loss of function and gain of function can be functionally relevant, and an increasing number of different disease entities exemplifies that inappropriate 3' end formation of human mRNAs can have a tremendous impact on health and disease. Here, we review the mechanistic hallmarks of mRNA 3' end processing, highlight the medical relevance of deregulation of this important step of mRNA maturation and illustrate the implications for diagnostic and therapeutic strategies.
Collapse
|
21
|
Dominski Z. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol 2007; 42:67-93. [PMID: 17453916 DOI: 10.1080/10409230701279118] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Proteins of the metallo-beta-lactamase family with either demonstrated or predicted nuclease activity have been identified in a number of organisms ranging from bacteria to humans and has been shown to be important constituents of cellular metabolism. Nucleases of this family are believed to utilize a zinc-dependent mechanism in catalysis and function as 5' to 3' exonucleases and or endonucleases in such processes as 3' end processing of RNA precursors, DNA repair, V(D)J recombination, and telomere maintenance. Examples of metallo-beta-lactamase nucleases include CPSF-73, a known component of the cleavage/polyadenylation machinery, which functions as the endonuclease in 3' end formation of both polyadenylated and histone mRNAs, and Artemis that opens DNA hairpins during V(D)J recombination. Mutations in two metallo-beta-lactamase nucleases have been implicated in human diseases: tRNase Z required for 3' processing of tRNA precursors has been linked to the familial form of prostate cancer, whereas inactivation of Artemis causes severe combined immunodeficiency (SCID). There is also a group of as yet uncharacterized proteins of this family in bacteria and archaea that based on sequence similarity to CPSF-73 are predicted to function as nucleases in RNA metabolism. This article reviews the cellular roles of nucleases of the metallo-beta-lactamase family and the recent advances in studying these proteins.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
22
|
Dominski Z, Marzluff WF. Formation of the 3' end of histone mRNA: getting closer to the end. Gene 2007; 396:373-90. [PMID: 17531405 PMCID: PMC2888136 DOI: 10.1016/j.gene.2007.04.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/09/2007] [Indexed: 11/17/2022]
Abstract
Nearly all eukaryotic mRNAs end with a poly(A) tail that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The only known exceptions to this rule are metazoan replication-dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3' end is generated by specialized 3' end processing machinery that cleaves histone pre-mRNAs 4-5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3' end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains at least two factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
23
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|