1
|
Girotti AW, Fahey JF, Korytowski W. Role of nitric oxide in hyper-aggressiveness of tumor cells that survive various anti-cancer therapies. Crit Rev Oncol Hematol 2022; 179:103805. [PMID: 36087851 DOI: 10.1016/j.critrevonc.2022.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Low level nitric oxide (NO) produced by inducible NO synthase (iNOS) in many malignant tumors is known to play a key role in the survival and proliferation of tumor cells. NO can also induce or augment resistance to anti-tumor treatments such as platinum-based chemotherapy (CT), ionizing radiotherapy (RT), and non-ionizing photodynamic therapy (PDT). In each of these treatments, tumor cells that survive the challenge may exhibit a striking increase in NO-dependent proliferative, migratory, and invasive aggressiveness compared with non-challenged controls. Moreover, NO from cells directly targeted by PDT can often stimulate aggressiveness in non- or poorly targeted bystander cells. Although NO-mediated resistance to many of these therapies is fairly-well recognized by now, the hyper-aggressiveness of surviving cells and bystander counterparts is not. We will focus on these negative aspects in this review, citing examples from the PDT, CT, and RT publications. Increased aggressiveness of cells that escape therapeutic elimination is a concern because it could enhance tumor progression and metastatic dissemination. Pharmacologic approaches for suppressing these negative responses will also be discussed, e.g., administering inhibitors of iNOS activity or iNOS expression as therapeutic adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Depatrment of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jonathan F Fahey
- Department of Pathology, University of Colorado, Aurora, CO, USA
| | | |
Collapse
|
2
|
Yang C, Mu G, Zhang Y, Gao Y, Zhang W, Liu J, Zhang W, Li P, Yang L, Yang Z, Gao J, Liu J. Supramolecular Nitric Oxide Depot for Hypoxic Tumor Vessel Normalization and Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202625. [PMID: 35906003 DOI: 10.1002/adma.202202625] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In cancer radiotherapy, the lack of fixed DNA damage by oxygen in hypoxic microenvironment of solid tumors often leads to severe radioresistance. Nitric oxide (NO) is a potent radiosensitizer that acts in two ways. It can directly react with the radical DNA thus fixing the damage. It also normalizes the abnormal tumor vessels, thereby increasing blood perfusion and oxygen supply. To achieve these functions, the dosage and duration of NO treatment need to be carefully controlled, otherwise it will lead to the exact opposite outcomes. However, a delivery method that fulfills both requirements is still lacking. A NO depot is designed for the control of NO releasing both over quantity and duration for hypoxic tumor vessel normalization and radiosensitization. In B16-tumor-bearing mice, the depot can provide low dosage NO continuously and release large amount of NO immediately before irradiation for a short period of time. These two modes of treatment work in synergy to reverse the radioresistance of B16 tumors more efficiently than releasing at single dosage.
Collapse
Affiliation(s)
- Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ganen Mu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenwen Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Paiyun Li
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|