1
|
Genta M, Ferrara G, Capelli R, Rondelli D, Sertic S, Bolognesi M, Rizzi M, Rossi F, Jeruzalmi D, Chaves-Sanjuan A, Miggiano R. Mechanistic understanding of UvrA damage detection and lesion hand-off to UvrB in Nucleotide Excision Repair. Nat Commun 2025; 16:3416. [PMID: 40210888 PMCID: PMC11985968 DOI: 10.1038/s41467-025-58670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Nucleotide excision repair (NER) represents one of the major molecular machineries that control chromosome stability in all living species. In Eubacteria, the initial stages of the repair process are carried out by the UvrABC excinuclease complex. Despite the wealth of structural data available, some crucial details of the pathway remain elusive. In this study, we present a structural investigation of the Mycobacterium tuberculosis UvrAUvrB complex and of the UvrA dimer, both in complex with damaged DNA. Our analyses yield insights into the DNA binding mode of UvrA, showing an unexplored conformation of Insertion Domains (IDs), underlying the essential role of these domains in DNA coordination. Furthermore, we observe an interplay between the ID and the UvrB Binding Domain (UBD): after the recognition of the damage, the IDs repositions with the concomitant reorganization of UBD, allowing the formation of the complex between UvrA and UvrB. These events are detected along the formation of the uncharacterized UvrA2UvrB1-DNA and the UvrA2UvrB2-DNA complexes which we interpret as hierarchical steps initiating the DNA repair cascade in the NER pathway, resulting in the formation of the pre-incision complex.
Collapse
Affiliation(s)
- Marianna Genta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Giulia Ferrara
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Riccardo Capelli
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Diego Rondelli
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Sarah Sertic
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Milan, 20133, Italy
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi and NOLIMITS, University of Milan, Milan, 20133, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Franca Rossi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Milan, 20133, Italy.
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi and NOLIMITS, University of Milan, Milan, 20133, Italy.
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
2
|
Nudler E. Transcription-coupled global genomic repair in E. coli. Trends Biochem Sci 2023; 48:873-882. [PMID: 37558547 DOI: 10.1016/j.tibs.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The nucleotide excision repair (NER) pathway removes helix-distorting lesions from DNA in all organisms. Escherichia coli has long been a model for understanding NER, which is traditionally divided into major and minor subpathways known as global genome repair (GGR) and transcription-coupled repair (TCR), respectively. TCR has been assumed to be mediated exclusively by Mfd, a DNA translocase of minimal NER phenotype. This review summarizes the evidence that shaped the traditional view of NER in bacteria, and reviews data supporting a new model in which GGR and TCR are inseparable. In this new model, RNA polymerase serves both as the essential primary sensor of bulky DNA lesions genome-wide and as the delivery platform for the assembly of functional NER complexes in living cells.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Gade P, Erlandson A, Ullah A, Chen X, Mathews II, Mera PE, Kim CY. Structural and functional analyses of the echinomycin resistance conferring protein Ecm16 from Streptomyces lasalocidi. Sci Rep 2023; 13:7980. [PMID: 37198233 PMCID: PMC10192343 DOI: 10.1038/s41598-023-34437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
Echinomycin is a natural product DNA bisintercalator antibiotic. The echinomycin biosynthetic gene cluster in Streptomyces lasalocidi includes a gene encoding the self-resistance protein Ecm16. Here, we present the 2.0 Å resolution crystal structure of Ecm16 bound to adenosine diphosphate. The structure of Ecm16 closely resembles that of UvrA, the DNA damage sensor component of the prokaryotic nucleotide excision repair system, but Ecm16 lacks the UvrB-binding domain and its associated zinc-binding module found in UvrA. Mutagenesis study revealed that the insertion domain of Ecm16 is required for DNA binding. Furthermore, the specific amino acid sequence of the insertion domain allows Ecm16 to distinguish echinomycin-bound DNA from normal DNA and link substrate binding to ATP hydrolysis activity. Expression of ecm16 in the heterologous host Brevibacillus choshinensis conferred resistance against echinomycin and other quinomycin antibiotics, including thiocoraline, quinaldopeptin, and sandramycin. Our study provides new insight into how the producers of DNA bisintercalator antibiotics fend off the toxic compounds that they produce.
Collapse
Affiliation(s)
- Priyanka Gade
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA
| | - Amanda Erlandson
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anwar Ullah
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Paola E Mera
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
5
|
Erlandson A, Gade P, Menikpurage IP, Kim CY, Mera PE. The UvrA-like protein Ecm16 requires ATPase activity to render resistance against echinomycin. Mol Microbiol 2022; 117:1434-1446. [PMID: 35534931 PMCID: PMC9328131 DOI: 10.1111/mmi.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
Bacteria use various strategies to become antibiotic resistant. The molecular details of these strategies are not fully understood. We can increase our understanding by investigating the same strategies found in antibiotic‐producing bacteria. In this work, we characterize the self‐resistance protein Ecm16 encoded by echinomycin‐producing bacteria. Ecm16 is a structural homolog of the nucleotide excision repair protein UvrA. Expression of ecm16 in the heterologous system Escherichia coli was sufficient to render resistance against echinomycin. Ecm16 binds DNA (double‐stranded and single‐stranded) using a nucleotide‐independent binding mode. Ecm16’s binding affinity for DNA increased by 1.7‐fold when the DNA is intercalated with echinomycin. Ecm16 can render resistance against echinomycin toxicity independently of the nucleotide excision repair system. Similar to UvrA, Ecm16 has ATPase activity, and this activity is essential for Ecm16’s ability to render echinomycin resistance. Notably, UvrA and Ecm16 were unable to complement each other's function. Together, our findings identify new mechanistic details of how a refurbished DNA repair protein Ecm16 can specifically render resistance to the DNA intercalator echinomycin.
Collapse
Affiliation(s)
- Amanda Erlandson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Priyanka Gade
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA
| | - Inoka P Menikpurage
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.,Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Bharati BK, Gowder M, Zheng F, Alzoubi K, Svetlov V, Kamarthapu V, Weaver JW, Epshtein V, Vasilyev N, Shen L, Zhang Y, Nudler E. Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature 2022; 604:152-159. [PMID: 35355008 PMCID: PMC9370829 DOI: 10.1038/s41586-022-04530-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023]
Abstract
Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.
Collapse
Affiliation(s)
- Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Fangfang Zheng
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Khaled Alzoubi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Venu Kamarthapu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Jacob W Weaver
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA. .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Charman RJ, Kad NM. Single molecule iSCAT imaging reveals a fast, energy efficient search mode for the DNA repair protein UvrA. NANOSCALE 2022; 14:5174-5184. [PMID: 35311869 PMCID: PMC8969456 DOI: 10.1039/d1nr06913f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Exposure to UV radiation results in numerous DNA lesions, which threaten genome integrity. The nucleotide excision DNA repair pathway detects and repairs a range of such UV-induced DNA lesions. In bacteria, initial damage detection and verification is carried out by two proteins: UvrA and UvrB. Despite decades of study, the process of how these proteins locate damage remains unclear. Here we use high-speed interferometric scattering (iSCAT) microscopy, in combination with a surface-bound-DNA assay, to investigate early damage detection by UvrA. We have discovered that UvrA interacts with DNA in two phases; a slow phase (∼1.3 s-1) that correlates with an ATP-consuming state previously identified, and a second, much faster search mode. These faster interactions persist for ∼130 ms and using ATP analogues we determine this phase does not require ATP consumption. Including this new fast-search state in a model of the DNA search process reveals that only with this state is it possible for basal levels of UvrA to explore 99% of the E. coli genome within a single division cycle. Altogether, this work uncovers the presence of a rapid, energy efficient search mechanism, which allows UvrA alone to search the entirety of the E. coli genome within a single division cycle.
Collapse
Affiliation(s)
- Robert J Charman
- School of Biological Sciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, UK.
| | - Neil M Kad
- School of Biological Sciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NH, UK.
| |
Collapse
|
8
|
In vitro reconstitution of an efficient nucleotide excision repair system using mesophilic enzymes from Deinococcus radiodurans. Commun Biol 2022; 5:127. [PMID: 35149830 PMCID: PMC8837605 DOI: 10.1038/s42003-022-03064-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Nucleotide excision repair (NER) is a universal and versatile DNA repair pathway, capable of removing a very wide range of lesions, including UV-induced pyrimidine dimers and bulky adducts. In bacteria, NER involves the sequential action of the UvrA, UvrB and UvrC proteins to release a short 12- or 13-nucleotide DNA fragment containing the damaged site. Although bacterial NER has been the focus of numerous studies over the past 40 years, a number of key questions remain unanswered regarding the mechanisms underlying DNA damage recognition by UvrA, the handoff to UvrB and the site-specific incision by UvrC. In the present study, we have successfully reconstituted in vitro a robust NER system using the UvrABC proteins from the radiation resistant bacterium, Deinococcus radiodurans. We have investigated the influence of various parameters, including temperature, salt, protein and ATP concentrations, protein purity and metal cations, on the dual incision by UvrABC, so as to find the optimal conditions for the efficient release of the short lesion-containing oligonucleotide. This newly developed assay relying on the use of an original, doubly-labelled DNA substrate has allowed us to probe the kinetics of repair on different DNA substrates and to determine the order and precise sites of incisions on the 5′ and 3′ sides of the lesion. This new assay thus constitutes a valuable tool to further decipher the NER pathway in bacteria. Reconstitution of D radiodurans nucleotide excision repair provides insights into the kinetics of repair on different DNA substrates and determines the order and precise sites of incisions on the 5’ and 3’ sides of the lesion.
Collapse
|
9
|
Deaconescu AM. Mfd - at the crossroads of bacterial DNA repair, transcriptional regulation and molecular evolvability. Transcription 2021; 12:156-170. [PMID: 34674614 PMCID: PMC8632110 DOI: 10.1080/21541264.2021.1982628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
For survival, bacteria need to continuously evolve and adapt to complex environments, including those that may impact the integrity of the DNA, the repository of genetic information to be passed on to future generations. The multiple factors of DNA repair share the substrate on which they operate with other key cellular machineries, principally those of replication and transcription, implying a high degree of coordination of DNA-based activities. In this review, I focus on progress made in the understanding of the protein factors operating at the crossroads of these three fundamental processes, with emphasis on the mutation frequency decline protein (Mfd, aka TRCF). Although Mfd research has a rich history that goes back in time for more than half a century, recent reports hint that much remains to be uncovered. I argue that besides being a transcription-repair coupling factor (TRCF), Mfd is also a global regulator of transcription and a pro-mutagenic factor, and that the way it interfaces with transcription, replication and nucleotide excision repair makes it an attractive candidate for the development of strategies to curb molecular evolution, hence, antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- CONTACT Alexandra M. Deaconescu Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine, Brown University, 70 Ship St. G-E4, Providence, RI02903, USA
| |
Collapse
|
10
|
Kraithong T, Hartley S, Jeruzalmi D, Pakotiprapha D. A Peek Inside the Machines of Bacterial Nucleotide Excision Repair. Int J Mol Sci 2021; 22:ijms22020952. [PMID: 33477956 PMCID: PMC7835731 DOI: 10.3390/ijms22020952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). Below, we discuss the architecture of key proteins in bacterial NER and recent biochemical, structural and single-molecule studies that shed light on the lesion recognition steps of both the GGR and the TCR sub-pathways. Although a great deal has been learned about both of these sub-pathways, several important questions, including damage discrimination, roles of ATP and the orchestration of protein binding and conformation switching, remain to be addressed.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence: (D.J.); (D.P.)
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (D.J.); (D.P.)
| |
Collapse
|
11
|
Kraithong T, Sucharitakul J, Buranachai C, Jeruzalmi D, Chaiyen P, Pakotiprapha D. Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair. DNA Repair (Amst) 2020; 97:103024. [PMID: 33302090 DOI: 10.1016/j.dnarep.2020.103024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Thailand; Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Doctor of Philosophy Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Pimchai Chaiyen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
12
|
Ghodke H, Ho HN, van Oijen AM. Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair. Nat Commun 2020; 11:1477. [PMID: 32198385 PMCID: PMC7083872 DOI: 10.1038/s41467-020-15179-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/23/2020] [Indexed: 01/01/2023] Open
Abstract
In the model organism Escherichia coli, helix distorting lesions are recognized by the UvrAB damage surveillance complex in the global genomic nucleotide excision repair pathway (GGR). Alternately, during transcription-coupled repair (TCR), UvrA is recruited to Mfd at sites of RNA polymerases stalled by lesions. Ultimately, damage recognition is mediated by UvrA, followed by verification by UvrB. Here we characterize the differences in the kinetics of interactions of UvrA with Mfd and UvrB by following functional, fluorescently tagged UvrA molecules in live TCR-deficient or wild-type cells. The lifetimes of UvrA in Mfd-dependent or Mfd-independent interactions in the absence of exogenous DNA damage are comparable in live cells, and are governed by UvrB. Upon UV irradiation, the lifetimes of UvrA strongly depended on, and matched those of Mfd. Overall, we illustrate a non-perturbative, imaging-based approach to quantify the kinetic signatures of damage recognition enzymes participating in multiple pathways in cells. In Escherichia coli, the UvrAB damage sensor recognizes helix-distorting lesions by itself or via Mfd bound to stalled RNA polymerase. Here authors use single-molecule fluorescence imaging to quantify the kinetic signatures of interactions of UvrA with Mfd and UvrB in live cells.
Collapse
Affiliation(s)
- Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Han Ngoc Ho
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| |
Collapse
|
13
|
Ho HN, van Oijen AM, Ghodke H. Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells. Nat Commun 2020; 11:1478. [PMID: 32198374 PMCID: PMC7083905 DOI: 10.1038/s41467-020-15182-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/23/2020] [Indexed: 01/20/2023] Open
Abstract
The Escherichia coli transcription-repair coupling factor Mfd displaces stalled RNA polymerase and delivers the stall site to the nucleotide excision repair factors UvrAB for damage detection. Whether this handoff from RNA polymerase to UvrA occurs via the Mfd-UvrA2-UvrB complex or alternate reaction intermediates in cells remains unclear. Here, we visualise Mfd in actively growing cells and determine the catalytic requirements for faithful recruitment of nucleotide excision repair proteins. We find that ATP hydrolysis by UvrA governs formation and disassembly of the Mfd-UvrA2 complex. Further, Mfd-UvrA2-UvrB complexes formed by UvrB mutants deficient in DNA loading and damage recognition are impaired in successful handoff. Our single-molecule dissection of interactions of Mfd with its partner proteins inside live cells shows that the dissociation of Mfd is tightly coupled to successful loading of UvrB, providing a mechanism via which loading of UvrB occurs in a strand-specific manner.
Collapse
Affiliation(s)
- Han Ngoc Ho
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
14
|
Jaciuk M, Swuec P, Gaur V, Kasprzak JM, Renault L, Dobrychłop M, Nirwal S, Bujnicki JM, Costa A, Nowotny M. A combined structural and biochemical approach reveals translocation and stalling of UvrB on the DNA lesion as a mechanism of damage verification in bacterial nucleotide excision repair. DNA Repair (Amst) 2020; 85:102746. [PMID: 31739207 PMCID: PMC7616783 DOI: 10.1016/j.dnarep.2019.102746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Nucleotide excision repair (NER) is a DNA repair pathway present in all domains of life. In bacteria, UvrA protein localizes the DNA lesion, followed by verification by UvrB helicase and excision by UvrC double nuclease. UvrA senses deformations and flexibility of the DNA duplex without precisely localizing the lesion in the damaged strand, an element essential for proper NER. Using a combination of techniques, we elucidate the mechanism of the damage verification step in bacterial NER. UvrA dimer recruits two UvrB molecules to its two sides. Each of the two UvrB molecules clamps a different DNA strand using its β-hairpin element. Both UvrB molecules then translocate to the lesion, and UvrA dissociates. The UvrB molecule that clamps the damaged strand gets stalled at the lesion to recruit UvrC. This mechanism allows UvrB to verify the DNA damage and identify its precise location triggering subsequent steps in the NER pathway.
Collapse
Affiliation(s)
- Marcin Jaciuk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland
| | - Paolo Swuec
- Molecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Vineet Gaur
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland
| | - Joanna M Kasprzak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Ludovic Renault
- Molecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mateusz Dobrychłop
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Shivlee Nirwal
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland.
| | - Alessandro Costa
- Molecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland.
| |
Collapse
|
15
|
Case BC, Hartley S, Osuga M, Jeruzalmi D, Hingorani MM. The ATPase mechanism of UvrA2 reveals the distinct roles of proximal and distal ATPase sites in nucleotide excision repair. Nucleic Acids Res 2019; 47:4136-4152. [PMID: 30892613 PMCID: PMC6486640 DOI: 10.1093/nar/gkz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 01/20/2023] Open
Abstract
The UvrA2 dimer finds lesions in DNA and initiates nucleotide excision repair. Each UvrA monomer contains two essential ATPase sites: proximal (P) and distal (D). The manner whereby their activities enable UvrA2 damage sensing and response remains to be clarified. We report three key findings from the first pre-steady state kinetic analysis of each site. Absent DNA, a P2ATP-D2ADP species accumulates when the low-affinity proximal sites bind ATP and enable rapid ATP hydrolysis and phosphate release by the high-affinity distal sites, and ADP release limits catalytic turnover. Native DNA stimulates ATP hydrolysis by all four sites, causing UvrA2 to transition through a different species, P2ADP-D2ADP. Lesion-containing DNA changes the mechanism again, suppressing ATP hydrolysis by the proximal sites while distal sites cycle through hydrolysis and ADP release, to populate proximal ATP-bound species, P2ATP-Dempty and P2ATP-D2ATP. Thus, damaged and native DNA trigger distinct ATPase site activities, which could explain why UvrA2 forms stable complexes with UvrB on damaged DNA compared with weaker, more dynamic complexes on native DNA. Such specific coupling between the DNA substrate and the ATPase mechanism of each site provides new insights into how UvrA2 utilizes ATP for lesion search, recognition and repair.
Collapse
Affiliation(s)
- Brandon C Case
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Memie Osuga
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Hunter College High School, New York, NY 10128, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.,Ph.D. Programs in Chemistry and Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Manju M Hingorani
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
16
|
Lee SJ, Sung RJ, Verdine GL. Mechanism of DNA Lesion Homing and Recognition by the Uvr Nucleotide Excision Repair System. RESEARCH (WASHINGTON, D.C.) 2019; 2019:5641746. [PMID: 31549070 PMCID: PMC6750098 DOI: 10.34133/2019/5641746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/26/2019] [Indexed: 11/06/2022]
Abstract
Nucleotide excision repair (NER) is an essential DNA repair system distinguished from other such systems by its extraordinary versatility. NER removes a wide variety of structurally dissimilar lesions having only their bulkiness in common. NER can also repair several less bulky nucleobase lesions, such as 8-oxoguanine. Thus, how a single DNA repair system distinguishes such a diverse array of structurally divergent lesions from undamaged DNA has been one of the great unsolved mysteries in the field of genome maintenance. Here we employ a synthetic crystallography approach to obtain crystal structures of the pivotal NER enzyme UvrB in complex with duplex DNA, trapped at the stage of lesion-recognition. These structures coupled with biochemical studies suggest that UvrB integrates the ATPase-dependent helicase/translocase and lesion-recognition activities. Our work also conclusively establishes the identity of the lesion-containing strand and provides a compelling insight to how UvrB recognizes a diverse array of DNA lesions.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rou-Jia Sung
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory L. Verdine
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Barnett JT, Kad NM. Understanding the coupling between DNA damage detection and UvrA's ATPase using bulk and single molecule kinetics. FASEB J 2018; 33:763-769. [PMID: 30020831 PMCID: PMC6355085 DOI: 10.1096/fj.201800899r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleotide excision repair (NER) protects cells against diverse types of DNA damage, principally UV irradiation. In Escherichia coli, damage is recognized by 2 key enzymes: UvrA and UvrB. Despite extensive investigation, the role of UvrA’s 2 ATPase domains in NER remains elusive. Combining single-molecule fluorescence microscopy and classic biochemical methods, we have investigated the role of nucleotide binding in UvrA’s kinetic cycle. Measurement of UvrA’s steady-state ATPase activity shows it is stimulated upon binding DNA (kcat 0.71–1.07/s). Despite UvrA’s ability to discriminate damage, we find UV-damaged DNA does not alter the steady-state ATPase. To understand how damage affects UvrA, we studied its binding to DNA under various nucleotide conditions at the single molecule level. We have found that both UV damage and nucleotide cofactors affect the attached lifetime of UvrA. In the presence of ATP and UV damage, the lifetime is significantly greater compared with undamaged DNA. To reconcile these observations, we suggest that UvrA uses negative cooperativity between its ATPase sites that is gated by damage recognition. Only in the presence of damage is the second site activated, most likely in a sequential manner.—Barnett, J. T., Kad, N. M. Understanding the coupling between DNA damage detection and UvrA’s ATPase using bulk and single molecule kinetics.
Collapse
Affiliation(s)
- Jamie T Barnett
- School of Biological Sciences, University of Kent, Canterbury, United Kingdom
| | - Neil M Kad
- School of Biological Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
18
|
Novel Sequence Features of DNA Repair Genes/Proteins from Deinococcus Species Implicated in Protection from Oxidatively Generated Damage. Genes (Basel) 2018. [PMID: 29518000 PMCID: PMC5867870 DOI: 10.3390/genes9030149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Deinococcus species display a high degree of resistance to radiation and desiccation due to their ability to protect critical proteome from oxidatively generated damage; however, the underlying mechanisms are not understood. Comparative analysis of DNA repair proteins reported here has identified 22 conserved signature indels (CSIs) in the proteins UvrA1, UvrC, UvrD, UvsE, MutY, MutM, Nth, RecA, RecD, RecG, RecQ, RecR, RuvC, RadA, PolA, DnaE, LigA, GyrA and GyrB, that are uniquely shared by all/most Deinococcus homologs. Of these CSIs, a 30 amino acid surface-exposed insert in the Deinococcus UvrA1, which distinguishes it from all other UvrA homologs, is of much interest. The uvrA1 gene in Deinococcus also exhibits specific genetic linkage (predicted operonic arrangement) to genes for three other proteins including a novel Deinococcus-specific transmembrane protein (designated dCSP-1) and the proteins DsbA and DsbB, playing central roles in protein disulfide bond formation by oxidation-reduction of CXXC (C represents cysteine, X any other amino acid) motifs. The CXXC motifs provide important targets for oxidation damage and they are present in many DNA repair proteins including five in UvrA, which are part of Zinc-finger elements. A conserved insert specific for Deinococcus is also present in the DsbA protein. Additionally, the uvsE gene in Deinococcus also shows specific linkage to the gene for a membrane-associated protein. To account for these novel observations, a model is proposed where specific interaction of the Deinococcus UvrA1 protein with membrane-bound dCSP-1 enables the UvrA1 to receive electrons from DsbA-DsbB oxido-reductase machinery to ameliorate oxidation damage in the UvrA1 protein.
Collapse
|
19
|
Tang Q, Liu YP, Shan HH, Tian LF, Zhang JZ, Yan XX. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair. Sci Rep 2018; 8:2127. [PMID: 29391496 PMCID: PMC5794780 DOI: 10.1038/s41598-018-20557-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/19/2018] [Indexed: 11/13/2022] Open
Abstract
RecF is a principal member of the RecF pathway. It interacts with RecO and RecR to initiate homologous recombination by loading RecA recombinases on single-stranded DNA and displacing single-stranded DNA-binding proteins. As an ATP-binding cassette ATPase, RecF exhibits ATP-dependent dimerization and structural homology with Rad50 and SMC proteins. However, the mechanism and action pattern of RecF ATP-dependent dimerization remains unclear. Here, We determined three crystal structures of TTERecF, TTERecF-ATP and TTERecF-ATPɤS from Thermoanaerobacter tengcongensis that reveal a novel ATP-driven RecF dimerization. RecF contains a positively charged tunnel on its dimer interface that is essential to ATP binding. Our structural and biochemical data indicate that the Walker A motif serves as a switch and plays a key role in ATP binding and RecF dimerization. Furthermore, Biolayer interferometry assay results showed that the TTERecF interacted with ATP and formed a dimer, displaying a higher affinity for DNA than that of the TTERecF monomer. Overall, our results provide a solid structural basis for understanding the process of RecF binding with ATP and the functional mechanism of ATP-dependent RecF dimerization.
Collapse
Affiliation(s)
- Qun Tang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai-Huan Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie-Zhong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
20
|
Lahiri S, Rizzi M, Rossi F, Miggiano R. Mycobacterium tuberculosis
UvrB forms dimers in solution and interacts with UvrA in the absence of ligands. Proteins 2017; 86:98-109. [DOI: 10.1002/prot.25412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Samarpita Lahiri
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| | - Menico Rizzi
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| | - Franca Rossi
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| | - Riccardo Miggiano
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| |
Collapse
|
21
|
Orlova N, Gerding M, Ivashkiv O, Olinares PDB, Chait BT, Waldor MK, Jeruzalmi D. The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 2017; 45:3724-3737. [PMID: 28031373 PMCID: PMC5397143 DOI: 10.1093/nar/gkw1288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/18/2016] [Indexed: 01/23/2023] Open
Abstract
The conserved DnaA-oriC system is used to initiate replication of primary chromosomes throughout the bacterial kingdom; however, bacteria with multipartite genomes evolved distinct systems to initiate replication of secondary chromosomes. In the cholera pathogen, Vibrio cholerae, and in related species, secondary chromosome replication requires the RctB initiator protein. Here, we show that RctB consists of four domains. The structure of its central two domains resembles that of several plasmid replication initiators. RctB contains at least three DNA binding winged-helix-turn-helix motifs, and mutations within any of these severely compromise biological activity. In the structure, RctB adopts a head-to-head dimeric configuration that likely reflects the arrangement in solution. Therefore, major structural reorganization likely accompanies complex formation on the head-to-tail array of binding sites in oriCII. Our findings support the hypothesis that the second Vibrionaceae chromosome arose from an ancestral plasmid, and that RctB may have evolved additional regulatory features.
Collapse
Affiliation(s)
- Natalia Orlova
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA
| | - Matthew Gerding
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Olha Ivashkiv
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
| | - Paul Dominic B Olinares
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Brian T Chait
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Biology, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, NY 10016, USA
| |
Collapse
|
22
|
Cheun Y, Koag MC, Naguib YW, Ouzon-Shubeita H, Cui Z, Pakotiprapha D, Lee S. Synthesis, structure, and biological evaluation of a platinum-carbazole conjugate. Chem Biol Drug Des 2017. [PMID: 28649747 DOI: 10.1111/cbdd.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cisplatin resistance is caused, in part, by the efficient removal of the helix-distorting cisplatin 1,2-intrastrand cross-links by nucleotide excision repair (NER) machinery. To make a platinum-DNA adduct that causes less helical distortion than the cisplatin 1,2-intrastrand adduct, we designed and synthesized a monofunctional platinum-carbazole conjugate (carbazoplatin). The 2.5 Å crystal structure of carbazoplatin-DNA adduct revealed both the monoplatination of the N7 of a guanine (G) base and the intercalation into two G:C base pairs, while causing a minor distortion of the DNA helix. A 50-mer dsDNA containing a single carbazoplatin lesion was poorly processed by UvrABC endonuclease, the prokaryotic NER machinery that detects helical distortion and performs dual incision around the lesion. Our cell viability assay indicated that the cytotoxic pathways of carbazoplatin might be different from those of cisplatin; carbazoplatin was 5-8 times more cytotoxic than cisplatin against PANC-1 and MDA-MB-231 cancer cell lines.
Collapse
Affiliation(s)
- Young Cheun
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Myong-Chul Koag
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Youssef W Naguib
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hala Ouzon-Shubeita
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Zhengrong Cui
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center of Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
Kraithong T, Channgam K, Itsathitphaisarn O, Tiensuwan M, Jeruzalmi D, Pakotiprapha D. Movement of the β-hairpin in the third zinc-binding module of UvrA is required for DNA damage recognition. DNA Repair (Amst) 2017; 51:60-69. [PMID: 28209516 DOI: 10.1016/j.dnarep.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/23/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A β-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing. Here, we investigate the contribution of the dynamics in the Zn3hp structural element to various activities of UvrA during the early steps of NER. By restricting the movement of the Zn3hp using disulfide crosslinking, we showed that the movement of the Zn3hp is required for damage-specific binding, UvrB loading and ATPase activities of UvrA. We individually inactivated each of the nucleotide binding sites in UvrA to investigate its role in the movement of the Zn3hp. Our results suggest that the conformational change of the Zn3hp is controlled by ATP hydrolysis at the distal nucleotide binding site. We propose a bi-phasic damage inspection model of UvrA in which movement of the Zn3hp plays a key role in damage recognition.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ketsaraphorn Channgam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Montip Tiensuwan
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
24
|
Hopfner KP. Invited review: Architectures and mechanisms of ATP binding cassette proteins. Biopolymers 2017; 105:492-504. [PMID: 27037766 DOI: 10.1002/bip.22843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) ATPases form chemo-mechanical engines and switches that function in a broad range of biological processes. Most prominently, a very large family of integral membrane NTPases-ABC transporters-catalyzes the import or export of a diverse molecules across membranes. ABC proteins are also important components of the chromosome segregation, recombination, and DNA repair machineries and regulate or catalyze critical steps of ribosomal protein synthesis. Recent structural and mechanistic studies draw interesting architectural and mechanistic parallels between diverse ABC proteins. Here, I review this state of our understanding how NTP-dependent conformational changes of ABC proteins drive diverse biological processes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 492-504, 2016.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Center for Integrated Protein Science Munich, Ludwigs-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
25
|
de Freitas MCR, Resende JA, Ferreira-Machado AB, Saji GDRQ, de Vasconcelos ATR, da Silva VL, Nicolás MF, Diniz CG. Exploratory Investigation of Bacteroides fragilis Transcriptional Response during In vitro Exposure to Subinhibitory Concentration of Metronidazole. Front Microbiol 2016; 7:1465. [PMID: 27703449 PMCID: PMC5028390 DOI: 10.3389/fmicb.2016.01465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022] Open
Abstract
Bacteroides fragilis, member from commensal gut microbiota, is an important pathogen associated to endogenous infections and metronidazole remains a valuable antibiotic for the treatment of these infections, although bacterial resistance is widely reported. Considering the need of a better understanding on the global mechanisms by which B. fragilis survive upon metronidazole exposure, we performed a RNA-seq transcriptomic approach with validation of gene expression results by qPCR. Bacteria strains were selected after in vitro subcultures with subinhibitory concentration (SIC) of the drug. From a wild type B. fragilis ATCC 43859 four derivative strains were selected: first and fourth subcultures under metronidazole exposure and first and fourth subcultures after drug removal. According to global gene expression analysis, 2,146 protein coding genes were identified, of which a total of 1,618 (77%) were assigned to a Gene Ontology term (GO), indicating that most known cellular functions were taken. Among these 2,146 protein coding genes, 377 were shared among all strains, suggesting that they are critical for B. fragilis survival. In order to identify distinct expression patterns, we also performed a K-means clustering analysis set to 15 groups. This analysis allowed us to detect the major activated or repressed genes encoding for enzymes which act in several metabolic pathways involved in metronidazole response such as drug activation, defense mechanisms against superoxide ions, high expression level of multidrug efflux pumps, and DNA repair. The strains collected after metronidazole removal were functionally more similar to those cultured under drug pressure, reinforcing that drug-exposure lead to drastic persistent changes in the B. fragilis gene expression patterns. These results may help to elucidate B. fragilis response during metronidazole exposure, mainly at SIC, contributing with information about bacterial survival strategies under stress conditions in their environment.
Collapse
Affiliation(s)
- Michele C R de Freitas
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora Juiz de Fora, Brazil
| | - Juliana A Resende
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora Juiz de Fora, Brazil
| | - Alessandra B Ferreira-Machado
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora Juiz de Fora, Brazil
| | - Guadalupe D R Q Saji
- Laboratório de Bioinformática and Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Ana T R de Vasconcelos
- Laboratório de Bioinformática and Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Vânia L da Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora Juiz de Fora, Brazil
| | - Marisa F Nicolás
- Laboratório de Bioinformática and Laboratório Nacional de Computação Científica Petrópolis, Brazil
| | - Cláudio G Diniz
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora Juiz de Fora, Brazil
| |
Collapse
|
26
|
Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency. PLoS One 2016; 11:e0157784. [PMID: 27327897 PMCID: PMC4915676 DOI: 10.1371/journal.pone.0157784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. However, little is known about the effects of XPC-DNA damage recognition kinetics on hNER. Although association of XPC is important, our current work shows that the XPC-DNA dissociation rate also plays a pivotal role in achieving NER efficiency. We characterized for the first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real time monitoring surface plasmon resonance technique. Strikingly, the half-life (t1/2 or the retention time of XPC in association with damaged DNA) shares an inverse relationship with NER efficiency. This is particularly true when XPC remained bound to clustered adducts for a much longer period of time as compared to mono-adducts. Our results suggest that XPC dissociation from the damage site could become a rate-limiting step in NER of certain types of DNA adducts, leading to repression of NER.
Collapse
|
27
|
Timmins J, Moe E. A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges. Comput Struct Biotechnol J 2016; 14:168-176. [PMID: 27924191 PMCID: PMC5128194 DOI: 10.1016/j.csbj.2016.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joanna Timmins
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Elin Moe
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica (ITQB), Universidade Nova de Lisboa, Av da Republica (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
28
|
Van Houten B. A tale of two cities: A tribute to Aziz Sancar's Nobel Prize in Chemistry for his molecular characterization of NER. DNA Repair (Amst) 2016; 37:A3-A13. [PMID: 26861185 PMCID: PMC5068483 DOI: 10.1016/j.dnarep.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
29
|
Ghosh S, Greenberg MM. Correlation of Thermal Stability and Structural Distortion of DNA Interstrand Cross-Links Produced from Oxidized Abasic Sites with Their Selective Formation and Repair. Biochemistry 2015; 54:6274-83. [PMID: 26426430 DOI: 10.1021/acs.biochem.5b00860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C4'-oxidized (C4-AP) and C5'-oxidized abasic sites (DOB) that are produced following abstraction of a hydrogen atom from the DNA backbone reversibly form cross-links selectively with dA opposite a 3'-adjacent nucleotide, despite the comparable proximity of an opposing dA. A previous report on UvrABC incision of DNA substrates containing stabilized analogues of the ICLs derived from C4-AP and DOB also indicated that the latter is repaired more readily by nucleotide excision repair [Ghosh, S., and Greenberg, M. M. (2014) Biochemistry 53, 5958-5965]. The source for selective cross-link formation was probed by comparing the reactivity of ICL analogues of C4-AP and DOB that mimic the preferred and disfavored cross-links with that of reagents that indirectly detect distortion by reacting with the nucleobases. The disfavored C4-AP and DOB analogues were each more reactive than the corresponding preferred cross-link substrates, suggesting that the latter are more stable, which is consistent with selective ICL formation. In addition, the preferred DOB analogue is more reactive than the respective C4-AP ICL, which is consistent with its more efficient incision by UvrABC. The conclusions drawn from the chemical probing experiments are corroborated by UV melting studies. The preferred ICLs exhibit melting temperatures higher than those of the corresponding disfavored isomers. These studies suggest that oxidized abasic sites form reversible interstrand cross-links with dA opposite the 3'-adjacent thymidine because these products are more stable and the thermodynamic preference is reflected in the transition states for their formation.
Collapse
Affiliation(s)
- Souradyuti Ghosh
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
30
|
Pistolesi S, Tjandra N, Bermejo GA. Solution NMR studies of periplasmic binding proteins and their interaction partners. Biomol Concepts 2015; 2:53-64. [PMID: 25962019 DOI: 10.1515/bmc.2011.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Periplasmic binding proteins (PBPs) are a crucial part of ATP-binding cassette import systems in Gram-negative bacteria. Central to their function is the ability to undergo a large-scale conformational rearrangement from open-unliganded to closed-liganded, which signals the presence of substrate and starts its translocation. Over the years, PBPs have been extensively studied not only owing to their essential role in nutrient uptake but also because they serve as excellent models for both practical applications (e.g., biosensor technology) and basic research (e.g., allosteric mechanisms). Although much of our knowledge at atomic level has been inferred from the detailed, static pictures afforded by crystallographic studies, nuclear magnetic resonance (NMR) has been able to fill certain gaps in such body of work, particularly with regard to dynamic processes. Here, we review NMR studies on PBPs, and their unique insights on conformation, dynamics, energetics, substrate binding, and interactions with related transport proteins. Based on the analysis of recent paramagnetic NMR results, as well as crystallographic and functional observations, we propose a mechanism that could explain the ability of certain PBPs to achieve a closed conformation in absence of ligand while others seem to remain open until ligand-mediated closure.
Collapse
|
31
|
Savery N. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Transcription 2014; 2:168-172. [PMID: 21922058 DOI: 10.4161/trns.2.4.16146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
Transcription-coupled DNA repair pathways enable lesions that block transcription to be repaired more quickly than similar lesions in other parts of the genome. Here I consider the recent progress that has been made in understanding how bacteria prioritize certain lesions for nucleotide excision repair.
Collapse
Affiliation(s)
- Nigel Savery
- DNA-Protein Interactions Unit; School of Biochemistry; University of Bristol; Bristol, UK
| |
Collapse
|
32
|
Mangoli S, Rath D, Goswami M, Jawali N. Increased ultraviolet radiation sensitivity of Escherichia coli grown at low temperature. Can J Microbiol 2014; 60:327-31. [PMID: 24802940 DOI: 10.1139/cjm-2013-0874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The repair of DNA damage caused by ultraviolet radiation (UVR) is well understood in both lower and higher organisms. Genetic studies carried out at optimum temperature for growth, 37 °C in Escherichia coli, have revealed the major pathways of DNA repair. We show that E. coli cells grown at 20 °C are more sensitive to UVR than cells grown at 37 °C. The analysis of knockout mutants demonstrates that cells impaired in recombinational DNA repair pathways show increased UV sensitivity at 20 °C. Cells with mutations in the nucleotide excision repair (NER) pathway genes are highly sensitive to UVR when grown at 37 °C and retain that sensitivity when grown at 20 °C, whereas wild-type cells are not sensitive when grown at 37 °C but become more sensitive to UVR when grown at low temperatures. Our results taken along with reports from the literature suggest that the UVR sensitivity of E. coli cells at low temperature could be due to impaired NER function.
Collapse
Affiliation(s)
- Suhas Mangoli
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | | | |
Collapse
|
33
|
Van Houten B, Kad N. Investigation of bacterial nucleotide excision repair using single-molecule techniques. DNA Repair (Amst) 2014; 20:41-48. [PMID: 24472181 PMCID: PMC5053424 DOI: 10.1016/j.dnarep.2013.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022]
Abstract
Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER.
Collapse
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Neil Kad
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
34
|
Patel SK, George LB, Prasanth Kumar S, Highland HN, Jasrai YT, Pandya HA, Desai KR. A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1. ISRN BIOINFORMATICS 2013; 2013:437168. [PMID: 25937947 PMCID: PMC4393060 DOI: 10.1155/2013/437168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
Abstract
The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism.
Collapse
Affiliation(s)
- Saumya K. Patel
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Sivakumar Prasanth Kumar
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Hyacinth N. Highland
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Yogesh T. Jasrai
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Himanshu A. Pandya
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Ketaki R. Desai
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| |
Collapse
|
35
|
Abstract
Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation.
Collapse
Affiliation(s)
- Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|
36
|
Roles for Helicases as ATP-Dependent Molecular Switches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:225-44. [PMID: 23161014 DOI: 10.1007/978-1-4614-5037-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On the basis of the familial name, a "helicase" might be expected to have an enzymatic activity that unwinds duplex polynucleotides to form single strands. A more encompassing taxonomy that captures alternative enzymatic roles has defined helicases as a sub-class of molecular motors that move directionally and processively along nucleic acids, the so-called "translocases". However, even this definition may be limiting in capturing the full scope of helicase mechanism and activity. Discussed here is another, alternative view of helicases-as machines which couple NTP-binding and hydrolysis to changes in protein conformation to resolve stable nucleoprotein assembly states. This "molecular switch" role differs from the classical view of helicases as molecular motors in that only a single catalytic NTPase cycle may be involved. This is illustrated using results obtained with the DEAD-box family of RNA helicases and with a model bacterial system, the ATP-dependent Type III restriction-modification enzymes. Further examples are discussed and illustrate the wide-ranging examples of molecular switches in genome metabolism.
Collapse
|
37
|
Deaconescu AM, Artsimovitch I, Grigorieff N. Interplay of DNA repair with transcription: from structures to mechanisms. Trends Biochem Sci 2012; 37:543-52. [PMID: 23084398 DOI: 10.1016/j.tibs.2012.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 01/29/2023]
Abstract
Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Howard Hughes Medical Institute, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS 029, Waltham, MA 02454, USA.
| | | | | |
Collapse
|
38
|
Pakotiprapha D, Jeruzalmi D. Small-angle X-ray scattering reveals architecture and A2
B2
stoichiometry of the UvrA-UvrB DNA damage sensor. Proteins 2012; 81:132-9. [DOI: 10.1002/prot.24170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 11/09/2022]
|
39
|
Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT. The effect of zinc limitation on the transcriptome ofPseudomonas protegens Pf-5. Environ Microbiol 2012; 15:702-15. [DOI: 10.1111/j.1462-2920.2012.02849.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/21/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Chee Kent Lim
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Joyce E. Loper
- USDA-ARS Horticultural Crops Research Laboratory and Department of Botany and Plant Pathology; Oregon State University; Corvallis; OR; USA
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| |
Collapse
|
40
|
Abstract
Structural studies of UV-induced lesions and their complexes with repair proteins reveal an intrinsic flexibility of DNA at lesion sites. Reduced DNA rigidity stems primarily from the loss of base stacking, which may manifest as bending, unwinding, base unstacking, or flipping out. The intrinsic flexibility at UV lesions allows efficient initial lesion recognition within a pool of millions to billions of normal DNA base pairs. To bypass the damaged site by translesion synthesis, the specialized DNA polymerase η acts like a molecular "splint" and reinforces B-form DNA by numerous protein-phosphate interactions. Photolyases and glycosylases that specifically repair UV lesions interact directly with UV lesions in bent DNA via surface complementation. UvrA and UvrB, which recognize a variety of lesions in the bacterial nucleotide excision repair pathway, appear to exploit hysteresis exhibited by DNA lesions and conduct an ATP-dependent stress test to distort and separate DNA strands. Similar stress tests are likely conducted in eukaryotic nucleotide excision repair.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rm. B1-03, Bethesda, Maryland 20892, USA.
| |
Collapse
|
41
|
Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface. Proc Natl Acad Sci U S A 2012; 109:3353-8. [PMID: 22331906 DOI: 10.1073/pnas.1115105109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription-coupled DNA repair targets DNA lesions that block progression of elongating RNA polymerases. In bacteria, the transcription-repair coupling factor (TRCF; also known as Mfd) SF2 ATPase recognizes RNA polymerase stalled at a site of DNA damage, removes the enzyme from the DNA, and recruits the Uvr(A)BC nucleotide excision repair machinery via UvrA binding. Previous studies of TRCF revealed a molecular architecture incompatible with UvrA binding, leaving its recruitment mechanism unclear. Here, we examine the UvrA recognition determinants of TRCF using X-ray crystallography of a core TRCF-UvrA complex and probe the conformational flexibility of TRCF in the absence and presence of nucleotides using small-angle X-ray scattering. We demonstrate that the C-terminal domain of TRCF is inhibitory for UvrA binding, but not RNA polymerase release, and show that nucleotide binding induces concerted multidomain motions. Our studies suggest that autoinhibition of UvrA binding in TRCF may be relieved only upon engaging the DNA damage.
Collapse
|
42
|
Pakotiprapha D, Samuels M, Shen K, Hu JH, Jeruzalmi D. Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat Struct Mol Biol 2012; 19:291-8. [PMID: 22307053 DOI: 10.1038/nsmb.2240] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 01/12/2023]
Abstract
Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexus of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.
Collapse
Affiliation(s)
- Danaya Pakotiprapha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.
Collapse
|
44
|
Ganesan A, Spivak G, Hanawalt PC. Transcription-coupled DNA repair in prokaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:25-40. [PMID: 22749141 DOI: 10.1016/b978-0-12-387665-2.00002-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd.
Collapse
Affiliation(s)
- Ann Ganesan
- Department of Biology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
45
|
Dynamics of lesion processing by bacterial nucleotide excision repair proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:1-24. [PMID: 22749140 DOI: 10.1016/b978-0-12-387665-2.00001-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule approaches permit an unrivalled view of how complex systems operate and have recently been used to understand DNA-protein interactions. These tools have enabled advances in a particularly challenging problem, the search for damaged sites on DNA. DNA repair proteins are present at the level of just a few hundred copies in bacterial cells to just a few thousand in human cells, and they scan the entire genome in search of their specific substrates. How do these proteins achieve this herculean task when their targets may differ from undamaged DNA by only a single hydrogen bond? Here we examine, using single-molecule approaches, how the prokaryotic nucleotide excision repair system balances the necessity for speed against specificity. We discuss issues at a theoretical, biological, and technical level and finally pose questions for future research.
Collapse
|
46
|
Liu Y, Reeves D, Kropachev K, Cai Y, Ding S, Kolbanovskiy M, Kolbanovskiy A, Bolton JL, Broyde S, Van Houten B, Geacintov NE. Probing for DNA damage with β-hairpins: similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair (Amst) 2011; 10:684-96. [PMID: 21741328 DOI: 10.1016/j.dnarep.2011.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ∼65% of these substrates; the other cases deviate mostly by ∼30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry Department, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rossi F, Khanduja JS, Bortoluzzi A, Houghton J, Sander P, Güthlein C, Davis EO, Springer B, Böttger EC, Relini A, Penco A, Muniyappa K, Rizzi M. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res 2011; 39:7316-28. [PMID: 21622956 PMCID: PMC3167621 DOI: 10.1093/nar/gkr271] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.
Collapse
Affiliation(s)
- Franca Rossi
- DiSCAFF, University of Piemonte Orientale Amedeo Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) 2011; 10:697-713. [PMID: 21571596 DOI: 10.1016/j.dnarep.2011.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicases must unwind DNA at the right place and time to maintain genomic integrity or gene expression. Biologically critical XPB and XPD helicases are key members of the human TFIIH complex; they anchor CAK kinase (cyclinH, MAT1, CDK7) to TFIIH and open DNA for transcription and for repair of duplex distorting damage by nucleotide excision repair (NER). NER is initiated by arrested RNA polymerase or damage recognition by XPC-RAD23B with or without DDB1/DDB2. XP helicases, named for their role in the extreme sun-mediated skin cancer predisposition xeroderma pigmentosum (XP), are then recruited to asymmetrically unwind dsDNA flanking the damage. XPB and XPD genetic defects can also cause premature aging with profound neurological defects without increased cancers: Cockayne syndrome (CS) and trichothiodystrophy (TTD). XP helicase patient phenotypes cannot be predicted from the mutation position along the linear gene sequence and adjacent mutations can cause different diseases. Here we consider the structural biology of DNA damage recognition by XPC-RAD23B, DDB1/DDB2, RNAPII, and ATL, and of helix unwinding by the XPB and XPD helicases plus the bacterial repair helicases UvrB and UvrD in complex with DNA. We then propose unified models for TFIIH assembly and roles in NER. Collective crystal structures with NMR and electron microscopy results reveal functional motifs, domains, and architectural elements that contribute to biological activities: damaged DNA binding, translocation, unwinding, and ATP driven changes plus TFIIH assembly and signaling. Coupled with mapping of patient mutations, these combined structural analyses provide a framework for integrating and unifying the rich biochemical and cellular information that has accumulated over forty years of study. This integration resolves puzzles regarding XP helicase functions and suggests that XP helicase positions and activities within TFIIH detect and verify damage, select the damaged strand for incision, and coordinate repair with transcription and cell cycle through CAK signaling.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
49
|
Wagner K, Moolenaar GF, Goosen N. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. DNA Repair (Amst) 2011; 10:483-96. [PMID: 21393072 DOI: 10.1016/j.dnarep.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
50
|
Jaciuk M, Nowak E, Skowronek K, Tańska A, Nowotny M. Structure of UvrA nucleotide excision repair protein in complex with modified DNA. Nat Struct Mol Biol 2011; 18:191-7. [PMID: 21240268 PMCID: PMC3428727 DOI: 10.1038/nsmb.1973] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/09/2010] [Indexed: 12/31/2022]
Abstract
One of the primary pathways for removal of DNA damage is nucleotide excision repair (NER). In bacteria, the UvrA protein is the component of NER that locates the lesion. A notable feature of NER is its ability to act on many DNA modifications that vary in chemical structure. So far, the mechanism underlying this broad specificity has been unclear. Here, we report the first crystal structure of a UvrA protein in complex with a chemically modified oligonucleotide. The structure shows that the UvrA dimer does not contact the site of lesion directly, but rather binds the DNA regions on both sides of the modification. The DNA region harboring the modification is deformed, with the double helix bent and unwound. UvrA uses damage-induced deformations of the DNA and a less rigid structure of the modified double helix for indirect readout of the lesion.
Collapse
Affiliation(s)
- Marcin Jaciuk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland. Correspondence should be addressed to M.N. ()
| | - Anna Tańska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|