1
|
Hisler V, Bardot P, Detilleux D, Bernardini A, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Le Gras S, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription initiation in holo-TFIID-depleted mouse embryonic stem cells. Cell Rep 2024; 43:114791. [PMID: 39352809 PMCID: PMC11551524 DOI: 10.1016/j.celrep.2024.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The recognition of core promoter sequences by TFIID is the first step in RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is a trilobular complex, composed of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs). Why and how TAFs are necessary for the formation of TFIID domains and how they contribute to transcription initiation remain unclear. Inducible TAF7 or TAF10 depletion, followed by comprehensive analysis of TFIID subcomplex formation, chromatin binding, and nascent transcription in mouse embryonic stem cells, result in the formation of a TAF7-lacking TFIID or a minimal core-TFIID complex, respectively. These partial complexes support TBP recruitment at promoters and nascent Pol II transcription at most genes early after depletion, but importantly, TAF10 is necessary for efficient Pol II pausing. We show that partially assembled TFIID complexes can sustain Pol II transcription initiation but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Paul Bardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Dylane Detilleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Claire Richard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Lynda Hadj Arab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Cynthia Ehrhard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Luc Négroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
2
|
Hisler V, Bardot P, Detilleux D, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Gras SL, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription with partially assembled TFIID complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.567046. [PMID: 38076793 PMCID: PMC10705246 DOI: 10.1101/2023.11.27.567046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Paul Bardot
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Dylane Detilleux
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Matthieu Stierle
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Claire Richard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Lynda Hadj Arab
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Cynthia Ehrhard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Bastien Morlet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Matthieu Jung
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Stéphanie Le Gras
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Luc Négroni
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - László Tora
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Stéphane D. Vincent
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| |
Collapse
|
3
|
Identification of the Major Effector StSROs in Potato: A Potential StWRKY- SRO6 Regulatory Pathway Enhances Plant Tolerance to Cadmium Stress. Int J Mol Sci 2022; 23:ijms232214318. [PMID: 36430795 PMCID: PMC9698690 DOI: 10.3390/ijms232214318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
SIMILAR TO RCD-ONE (SRO) family members and transcription factors (TFs) often improve plant antioxidant capacity through interaction and co-regulation and participate in plant resistance to drought and high-salt stress. However, whether SROs are involved in the response to heavy metal stress, especially SRO genes with a specific response and tolerance characteristics to cadmium (Cd) stress, remains unclear. We first identified six SRO genes in the potato genome by PARP and RST domains. Special and conserved StSROs were found, and the spatio temporal tissue-specific expression patterns and co-expression network diagrams of StSROs under the stress of 5 heavy metals were constructed. Second, we identified StSRO6 as a major effector gene (StSRO6-MEG) and StSRO5 as a secondary effector gene (StSRO5-SEG) through a comprehensive analysis. Interestingly, they may hold true for various physiological or stress responses in plants. In addition, using systematic genomics and comparative omics techniques, the key gene StSRO6 that affects the difference in Cd accumulation was discovered, cloned in the low-Cd accumulation "Yunshu 505", and transformed into the yeast mutant ycf1 for overexpression. The results proved that StSRO6 could confer Cd tolerance. Finally, through transient expression and in vitro culture tests, we hypothesized that StSROs 5/6 are regulated by the transcription factor StWRKY6 and mediates the reactive oxygen species (ROS) system to confer Cd tolerance. These findings offer a new perspective for understanding the mechanisms underlying Cd tolerance in plants, and simultaneously provide clues for the development of biological agents for preventing and controlling Cd migration and transformation.
Collapse
|
4
|
Le SN, Brown CR, Harvey S, Boeger H, Elmlund H, Elmlund D. The TAFs of TFIID Bind and Rearrange the Topology of the TATA-Less RPS5 Promoter. Int J Mol Sci 2019; 20:ijms20133290. [PMID: 31277458 PMCID: PMC6650902 DOI: 10.3390/ijms20133290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023] Open
Abstract
The general transcription factor TFIID is a core promoter selectivity factor that recognizes DNA sequence elements and nucleates the assembly of a pre-initiation complex (PIC). The mechanism by which TFIID recognizes the promoter is poorly understood. The TATA-box binding protein (TBP) is a subunit of the multi-protein TFIID complex believed to be key in this process. We reconstituted transcription from highly purified components on a ribosomal protein gene (RPS5) and discovered that TFIIDΔTBP binds and rearranges the promoter DNA topology independent of TBP. TFIIDΔTBP binds ~200 bp of the promoter and changes the DNA topology to a larger extent than the nucleosome core particle. We show that TBP inhibits the DNA binding activities of TFIIDΔTBP and conclude that the complete TFIID complex may represent an auto-inhibited state. Furthermore, we show that the DNA binding activities of TFIIDΔTBP are required for assembly of a PIC poised to select the correct transcription start site (TSS).
Collapse
Affiliation(s)
- Sarah N Le
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, VIC 3800, Australia
| | - Christopher R Brown
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
- Alnylam Pharmaceuticals, 300 Third St. Cambridge, MA 02142, USA
| | - Stacy Harvey
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
- Two Pore Guys, 2161 Delaware Ave. Suite B, Santa Cruz, CA 95060, USA
| | - Hinrich Boeger
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, VIC 3800, Australia.
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Nogales E, Patel AB, Louder RK. Towards a mechanistic understanding of core promoter recognition from cryo-EM studies of human TFIID. Curr Opin Struct Biol 2017. [PMID: 28624568 DOI: 10.1016/j.sbi.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
TFIID is a critical component of the eukaryotic transcription pre-initiation complex (PIC) required for the recruitment of RNA Pol II to the start site of protein-coding genes. Within the PIC, TFIID's role is to recognize and bind core promoter sequences and recruit the rest of the PIC components. Due to its size and its conformational complexity, TFIID poses a serious challenge for structural characterization. The small amounts of purified TFIID that can be obtained by present methods of purification from endogenous sources has limited structural studies to cryo-EM visualization, which requires very small amounts of sample. Previous cryo-EM studies have shed light on how the extreme conformational flexibility of TFIID is involved in core promoter DNA binding. Recent progress in cryo-EM methodology has facilitated a parallel progress in the study of human TFIID, leading to an improvement in resolution and the identification of the structural elements in the complex directly involved in DNA interaction. While many questions remain unanswered, the present structural knowledge of human TFIID suggests a mechanism for the sequential engagement with different core promoter sequences and how it could be influenced by regulatory factors.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, UC Berkeley, CA, USA; Howard Hughes Medical Institute, UC Berkeley, CA, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Lab, CA, USA.
| | | | | |
Collapse
|
6
|
p53 Dynamically Directs TFIID Assembly on Target Gene Promoters. Mol Cell Biol 2017; 37:MCB.00085-17. [PMID: 28416636 DOI: 10.1128/mcb.00085-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
p53 is a central regulator that turns on vast gene networks to maintain cellular integrity in the presence of various stimuli. p53 activates transcription initiation in part by aiding recruitment of TFIID to the promoter. However, the precise means by which p53 dynamically interacts with TFIID to facilitate assembly on target gene promoters remains elusive. To address this key issue, we have undertaken an integrated approach involving single-molecule fluorescence microscopy, single-particle cryo-electron microscopy, and biochemistry. Our real-time single-molecule imaging data demonstrate that TFIID alone binds poorly to native p53 target promoters. p53 unlocks TFIID's ability to bind DNA by stabilizing TFIID contacts with both the core promoter and a region within p53's response element. Analysis of single-molecule dissociation kinetics reveals that TFIID interacts with promoters via transient and prolonged DNA binding modes that are each regulated by p53. Importantly, our structural work reveals that TFIID's conversion to a rearranged DNA binding conformation is enhanced in the presence of DNA and p53. Notably, TFIID's interaction with DNA induces p53 to rapidly dissociate, which likely leads to additional rounds of p53-mediated recruitment of other basal factors. Collectively, these findings indicate that p53 dynamically escorts and loads TFIID onto its target promoters.
Collapse
|
7
|
Abstract
Eukaryotic gene transcription requires the assembly at the promoter of a large preinitiation complex (PIC) that includes RNA polymerase II (Pol II) and the general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. The size and complexity of Pol II, TFIID, and TFIIH have precluded their reconstitution from heterologous systems, and purification relies on scarce endogenous sources. Together with their conformational flexibility and the transient nature of their interactions, these limitations had precluded structural characterization of the PIC. In the last few years, however, progress in cryo-electron microscopy (cryo-EM) has made possible the visualization, at increasingly better resolution, of large PIC assemblies in different functional states. These structures can now be interpreted in near-atomic detail and provide an exciting structural framework for past and future functional studies, giving us unique mechanistic insight into the complex process of transcription initiation.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, University of California, Berkeley, California 94720-3220
- Howard Hughes Medical Institute, Berkeley, California 94720-3220
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, California 94720-3220;
| | - Robert K Louder
- Biophysics Graduate Group, University of California, Berkeley, California 94720-3220
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500
| |
Collapse
|
8
|
Sinha I, Kumar S, Poonia P, Sawhney S, Natarajan K. Functional specialization of two paralogous TAF12 variants by their selective association with SAGA and TFIID transcriptional regulatory complexes. J Biol Chem 2017; 292:6047-6055. [PMID: 28275052 PMCID: PMC5391738 DOI: 10.1074/jbc.c116.768549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
TATA box-binding protein (TBP)-associated factors (TAFs), evolutionarily conserved from yeast to humans, play a central role during transcription initiation. A subset of TAF proteins is shared in transcription factor II D (TFIID) and SAGA transcription regulatory complexes. Although higher eukaryotes contain multiple TAF variants that specify tissue- and developmental stage-specific organization of TFIID or SAGA complexes, in unicellular genomes, however, each TAF is encoded by a single gene. Surprisingly, we found that the genome of Candida albicans, the predominant human fungal pathogen, contains two paralogous TAF12 genes, CaTAF12L and CaTAF12, encoding H2B-like histone-fold domain-containing variants. Of the available fungal genome sequences, only seven other closely related diploid pathogenic Candida genomes encode the two TAF12 paralogs. Using affinity purifications from C. albicans cell extracts, we demonstrate that CaTAF12L uniquely associates with the SAGA complex and CaTAF12 associates with the TFIID complex. We further show that CaTAF12, but not CaTAF12L, is essential for C. albicans growth. Conditional depletion of the two TAF12 variant proteins caused distinct cellular and colony phenotypes. Together our results define a specialized organization of the TAF12 variants and non-redundant roles for the two TAF12 variants in the unicellular C. albicans genome.
Collapse
Affiliation(s)
- Ishani Sinha
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shambhu Kumar
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Poonia
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Sawhney
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishnamurthy Natarajan
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
9
|
Abstract
TFIID is a large protein complex required for the recognition and binding of eukaryotic gene core promoter sequences and for the recruitment of the rest of the general transcription factors involved in initiation of eukaryotic protein gene transcription. Cryo-electron microscopy studies have demonstrated the conformational complexity of human TFIID, where one-third of the mass of the complex can shift its position by well over 100 Å. This conformational plasticity appears to be linked to the capacity of TFIID to bind DNA, and suggests how it would allow both the recognition of different core promoter elements and the tuning of its binding affinity by regulatory factors.
Collapse
Affiliation(s)
- Eva Nogales
- a Molecular and Cell Biology Department and QB3 Institute , UC Berkeley , CA , USA.,b Howard Hughes Medical Institute , UC Berkeley , CA , USA.,c Molecular Biophysics and Integrative Bio-Imaging Division , Lawrence Berkeley National Lab , CA , USA
| | - Jie Fang
- b Howard Hughes Medical Institute , UC Berkeley , CA , USA
| | | |
Collapse
|
10
|
Nogales E, Louder RK, He Y. Cryo-EM in the study of challenging systems: the human transcription pre-initiation complex. Curr Opin Struct Biol 2016; 40:120-127. [PMID: 27689812 PMCID: PMC5161697 DOI: 10.1016/j.sbi.2016.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Single particle cryo-Electron Microscopy (cryo-EM) is a technique that allows the structural characterization of macromolecules without the need for crystallization. For certain type of samples that are ideally suited for cryo-EM studies it has been possible to reach high-resolution structures following relatively standard procedures. Other biological systems remain highly challenging, even for cryo-EM. Challenges may involve the scarcity of the sample, poor stability of the complexes, and most often, the intrinsic flexibility of biological molecules. Among these challenging samples are large eukaryotic transcription complexes, which suffer from all such shortcomings. Here we report how we have recently tried to overcome those challenges in order to improve our structural understanding of the human transcription pre-initiation complex assembly and the transcription initiation process. Parallel efforts have also been carried out for budding yeast transcription initiation complexes, allowing comparisons that establish both the overall conservation and the specific structural differences between the two systems.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, UC Berkeley, CA, USA; Howard Hughes Medical Institute, UC Berkeley, CA, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Lab, CA, USA.
| | | | - Yuan He
- Department of Molecular Biosciences, Northwestern University, IL, USA
| |
Collapse
|
11
|
Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 2016; 531:604-9. [PMID: 27007846 PMCID: PMC4856295 DOI: 10.1038/nature17394] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.
Collapse
|
12
|
Zhu JJ, Luo J, Xu HF, Wang H, Loor JJ. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells. J Dairy Sci 2016; 99:4893-4898. [PMID: 26995134 DOI: 10.3168/jds.2015-10733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022]
Abstract
Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells.
Collapse
Affiliation(s)
- J J Zhu
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - J Luo
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China.
| | - H F Xu
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China
| | - H Wang
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation, Southwest University for Nationalities, Chengdu, Sichuan, 610041, P. R. China
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
13
|
Zeng J, Mi R, Wang Y, Li Y, Lin L, Yao B, Song L, van Die I, Chapman AB, Cummings RD, Jin P, Ju T. Promoters of Human Cosmc and T-synthase Genes Are Similar in Structure, Yet Different in Epigenetic Regulation. J Biol Chem 2015; 290:19018-33. [PMID: 26063800 PMCID: PMC4521027 DOI: 10.1074/jbc.m115.654244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/29/2015] [Indexed: 01/31/2023] Open
Abstract
The T-synthase (core 1 β3-galactosyltransferase) and its molecular chaperone Cosmc regulate the biosynthesis of mucin type O-glycans on glycoproteins, and evidence suggests that both T-synthase and Cosmc are transcriptionally suppressed in several human diseases, although the transcriptional regulation of these two genes is not understood. Here, we characterized the promoters essential for human Cosmc and T-synthase transcription. The upstream regions of the genes lack a conventional TATA box but contain CpG islands, cCpG-I and cCpG-II for Cosmc and tCpG for T-synthase. Using luciferase reporter assays, site-directed mutagenesis, ChIP assays, and mithramycin A treatment, we identified the core promoters within cCpG-II and tCpG, which contain two binding sites for Krüppel-like transcription factors, including SP1/SP3, respectively. Methylome analysis of Tn4 B cells, which harbor a silenced Cosmc, confirmed the hypermethylation of the Cosmc core promoter but not for T-synthase. These results demonstrate that Cosmc and T-synthase are transcriptionally regulated at a basal level by the specificity protein/Krüppel-like transcription factor family of members, which explains their ubiquitous and coordinated expression, and also indicate that they are differentially epigenetically regulated beyond X chromosome imprinting. These results are important in understanding the regulation of these genes that have roles in human diseases, such as IgA nephropathy and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lina Song
- From the Departments of Biochemistry
| | - Irma van Die
- the Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Arlene B Chapman
- Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | | | | | | |
Collapse
|
14
|
Specificity protein 1 regulates gene expression related to fatty acid metabolism in goat mammary epithelial cells. Int J Mol Sci 2015; 16:1806-20. [PMID: 25594872 PMCID: PMC4307335 DOI: 10.3390/ijms16011806] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/28/2022] Open
Abstract
Specificity protein 1 (SP1) is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311) and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium), pig, primates (pongo, gorilla, macaca and papio) and murine (rattus and mus), while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs) led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ) and lower liver X receptor α (LXRα) mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.
Collapse
|
15
|
Diversity in TAF proteomics: consequences for cellular differentiation and migration. Int J Mol Sci 2014; 15:16680-97. [PMID: 25244017 PMCID: PMC4200853 DOI: 10.3390/ijms150916680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022] Open
Abstract
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of “core transcription machinery” during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
Collapse
|
16
|
Ribeiro JR, Lovasco LA, Vanderhyden BC, Freiman RN. Targeting TBP-Associated Factors in Ovarian Cancer. Front Oncol 2014; 4:45. [PMID: 24653979 PMCID: PMC3949196 DOI: 10.3389/fonc.2014.00045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022] Open
Abstract
As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adaptive changes in growth and morphology that promote metastasis and chemoresistance. Herein, we outline a hypothesis that TATA-box binding protein associated factors (TAFs), which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regulate differentiation and proliferation states; their expression is typically high in pluripotent cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases or mRNA overexpression in 73% of high-grade serous ovarian cancers (HGSC). At the biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator element, which may lead to the deregulation of the transcriptional output of these tumor cells. TAF4, which is altered in 66% of HGSC, is crucial for the stability of the TFIID complex and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show that TAF4B mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer, since it is downregulated or deleted in 98% of HGSC. We conclude that a greater understanding of mechanisms of transcriptional regulation that execute signals from oncogenic signaling cascades is needed in order to expand our understanding of the etiology and progression of ovarian cancer, and most importantly to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Lindsay A Lovasco
- Molecular and Cellular Biology and Biochemistry, Brown University , Providence, RI , USA
| | - Barbara C Vanderhyden
- Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada ; Centre for Cancer Therapeutics, Ottawa Hospital Research Institute , Ottawa, ON , Canada
| | - Richard N Freiman
- Pathobiology Graduate Program, Brown University , Providence, RI , USA ; Molecular and Cellular Biology and Biochemistry, Brown University , Providence, RI , USA
| |
Collapse
|
17
|
Wardell JR, Hodgkinson KM, Binder AK, Seymour KA, Korach KS, Vanderhyden BC, Freiman RN. Estrogen responsiveness of the TFIID subunit TAF4B in the normal mouse ovary and in ovarian tumors. Biol Reprod 2013; 89:116. [PMID: 24068106 DOI: 10.1095/biolreprod.113.111336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation.
Collapse
Affiliation(s)
- Jennifer R Wardell
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island
| | | | | | | | | | | | | |
Collapse
|
18
|
Ori A, Banterle N, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 2013; 9:648. [PMID: 23511206 PMCID: PMC3619942 DOI: 10.1038/msb.2013.4] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/17/2013] [Indexed: 11/09/2022] Open
Abstract
The stoichiometry of the human nuclear pore complex is revealed by targeted mass spectrometry and super-resolution microscopy. The analysis reveals that the composition of the nuclear pore and other nuclear protein complexes is remodeled as a function of the cell type. ![]()
The human NPC has a previously unanticipated stoichiometry that varies across cell types. Primarily functional Nups are dynamic, while the NPC scaffold is static. Stoichiometries of many complexes are fine-tuned toward cell type-specific needs.
To understand the structure and function of large molecular machines, accurate knowledge of their stoichiometry is essential. In this study, we developed an integrated targeted proteomics and super-resolution microscopy approach to determine the absolute stoichiometry of the human nuclear pore complex (NPC), possibly the largest eukaryotic protein complex. We show that the human NPC has a previously unanticipated stoichiometry that varies across cancer cell types, tissues and in disease. Using large-scale proteomics, we provide evidence that more than one third of the known, well-defined nuclear protein complexes display a similar cell type-specific variation of their subunit stoichiometry. Our data point to compositional rearrangement as a widespread mechanism for adapting the functions of molecular machines toward cell type-specific constraints and context-dependent needs, and highlight the need of deeper investigation of such structural variants.
Collapse
Affiliation(s)
- Alessandro Ori
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
van Nuland R, Schram AW, van Schaik FMA, Jansen PWTC, Vermeulen M, Marc Timmers HT. Multivalent engagement of TFIID to nucleosomes. PLoS One 2013; 8:e73495. [PMID: 24039962 PMCID: PMC3770614 DOI: 10.1371/journal.pone.0073495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/20/2013] [Indexed: 12/20/2022] Open
Abstract
The process of eukaryotic transcription initiation involves the assembly of basal transcription factor complexes on the gene promoter. The recruitment of TFIID is an early and important step in this process. Gene promoters contain distinct DNA sequence elements and are marked by the presence of post-translationally modified nucleosomes. The contributions of these individual features for TFIID recruitment remain to be elucidated. Here, we use immobilized reconstituted promoter nucleosomes, conventional biochemistry and quantitative mass spectrometry to investigate the influence of distinct histone modifications and functional DNA-elements on the binding of TFIID. Our data reveal synergistic effects of H3K4me3, H3K14ac and a TATA box sequence on TFIID binding in vitro. Stoichiometry analyses of affinity purified human TFIID identified the presence of a stable dimeric core. Several peripheral TAFs, including those interacting with distinct promoter features, are substoichiometric yet present in substantial amounts. Finally, we find that the TAF3 subunit of TFIID binds to poised promoters in an H3K4me3-dependent manner. Moreover, the PHD-finger of TAF3 is important for rapid induction of target genes. Thus, fine-tuning of TFIID engagement on promoters is driven by synergistic contacts with both DNA-elements and histone modifications, eventually resulting in a high affinity interaction and activation of transcription.
Collapse
Affiliation(s)
- Rick van Nuland
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Andrea W. Schram
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Frederik M. A. van Schaik
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Pascal W. T. C. Jansen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (MV); (HTMT)
| | - H. T. Marc Timmers
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
- * E-mail: (MV); (HTMT)
| |
Collapse
|
20
|
Cianfrocco MA, Nogales E. Regulatory interplay between TFIID's conformational transitions and its modular interaction with core promoter DNA. Transcription 2013; 4:120-6. [PMID: 23863784 PMCID: PMC4042585 DOI: 10.4161/trns.25291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent structural and biochemical studies of human TFIID have significantly increased our understanding of the mechanisms underlying the recruitment of TFIID to promoter DNA and its role in transcription initiation. Structural studies using cryo-EM revealed that modular interactions underlie TFIID’s ability to bind simultaneously multiple promoter motifs and to define a DNA state that will facilitate transcription initiation. Here we propose a general model of promoter binding by TFIID, where co-activators, activators, and histone modifications promote and/or stabilize a conformational state of TFIID that results in core promoter engagement. Within this high affinity conformation, we propose that TFIID’s extensive interaction with promoter DNA leads to topological changes in the DNA that facilitate the eventual loading of RNAP II. While more work is required to dissect the individual contributions of activators and repressors to TFIID’s DNA binding, the recent cryo-EM studies provide a physical framework to guide future structural, biophysical, and biochemical experiments.
Collapse
|
21
|
Cianfrocco MA, Kassavetis GA, Grob P, Fang J, Juven-Gershon T, Kadonaga JT, Nogales E. Human TFIID binds to core promoter DNA in a reorganized structural state. Cell 2013; 152:120-31. [PMID: 23332750 DOI: 10.1016/j.cell.2012.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/20/2012] [Accepted: 11/28/2012] [Indexed: 12/23/2022]
Abstract
A mechanistic description of metazoan transcription is essential for understanding the molecular processes that govern cellular decisions. To provide structural insights into the DNA recognition step of transcription initiation, we used single-particle electron microscopy (EM) to visualize human TFIID with promoter DNA. This analysis revealed that TFIID coexists in two predominant and distinct structural states that differ by a 100 Å translocation of TFIID's lobe A. The transition between these structural states is modulated by TFIIA, as the presence of TFIIA and promoter DNA facilitates the formation of a rearranged state of TFIID that enables promoter recognition and binding. DNA labeling and footprinting, together with cryo-EM studies, were used to map the locations of TATA, Initiator (Inr), motif ten element (MTE), and downstream core promoter element (DPE) promoter motifs within the TFIID-TFIIA-DNA structure. The existence of two structurally and functionally distinct forms of TFIID suggests that the different conformers may serve as specific targets for the action of regulatory factors.
Collapse
Affiliation(s)
- Michael A Cianfrocco
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
The architecture of human general transcription factor TFIID core complex. Nature 2013; 493:699-702. [PMID: 23292512 DOI: 10.1038/nature11791] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 11/14/2012] [Indexed: 11/08/2022]
Abstract
The initiation of gene transcription by RNA polymerase II is regulated by a plethora of proteins in human cells. The first general transcription factor to bind gene promoters is transcription factor IID (TFIID). TFIID triggers pre-initiation complex formation, functions as a coactivator by interacting with transcriptional activators and reads epigenetic marks. TFIID is a megadalton-sized multiprotein complex composed of TATA-box-binding protein (TBP) and 13 TBP-associated factors (TAFs). Despite its crucial role, the detailed architecture and assembly mechanism of TFIID remain elusive. Histone fold domains are prevalent in TAFs, and histone-like tetramer and octamer structures have been proposed in TFIID. A functional core-TFIID subcomplex was revealed in Drosophila nuclei, consisting of a subset of TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12). These core subunits are thought to be present in two copies in holo-TFIID, in contrast to TBP and other TAFs that are present in a single copy, conveying a transition from symmetry to asymmetry in the TFIID assembly pathway. Here we present the structure of human core-TFIID determined by cryo-electron microscopy at 11.6 Å resolution. Our structure reveals a two-fold symmetric, interlaced architecture, with pronounced protrusions, that accommodates all conserved structural features of the TAFs including the histone folds. We further demonstrate that binding of one TAF8-TAF10 complex breaks the original symmetry of core-TFIID. We propose that the resulting asymmetric structure serves as a functional scaffold to nucleate holo-TFIID assembly, by accreting one copy each of the remaining TAFs and TBP.
Collapse
|
23
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
24
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
25
|
Analysis of human Ki-67 gene promoter and identification of the Sp1 binding sites for Ki-67 transcription. Tumour Biol 2011; 33:257-66. [DOI: 10.1007/s13277-011-0277-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022] Open
|
26
|
Chen X, Lu C, Morillo Prado JR, Eun SH, Fuller MT. Sequential changes at differentiation gene promoters as they become active in a stem cell lineage. Development 2011; 138:2441-50. [PMID: 21610025 DOI: 10.1242/dev.056572] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional silencing of terminal differentiation genes by the Polycomb group (PcG) machinery is emerging as a key feature of precursor cells in stem cell lineages. How, then, is this epigenetic silencing reversed for proper cellular differentiation? Here, we investigate how the developmental program reverses local PcG action to allow expression of terminal differentiation genes in the Drosophila male germline stem cell (GSC) lineage. We find that the silenced state, set up in precursor cells, is relieved through developmentally regulated sequential events at promoters once cells commit to spermatocyte differentiation. The programmed events include global downregulation of Polycomb repressive complex 2 (PRC2) components, recruitment of hypophosphorylated RNA polymerase II (Pol II) to promoters, as well as the expression and action of testis-specific homologs of TATA-binding protein-associated factors (tTAFs). In addition, action of the testis-specific meiotic arrest complex (tMAC), a tissue-specific version of the MIP/dREAM complex, is required both for recruitment of tTAFs to target differentiation genes and for proper cell type-specific localization of PRC1 components and tTAFs within the spermatocyte nucleolus. Together, the action of the tMAC and tTAF cell type-specific chromatin and transcription machinery leads to loss of Polycomb and release of stalled Pol II from the terminal differentiation gene promoters, allowing robust transcription.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, USA.
| | | | | | | | | |
Collapse
|
27
|
Development of Algorithms for Mass Spectrometry-based Label-free Quantitative Proteomics*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Papai G, Weil PA, Schultz P. New insights into the function of transcription factor TFIID from recent structural studies. Curr Opin Genet Dev 2011; 21:219-24. [PMID: 21420851 DOI: 10.1016/j.gde.2011.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/18/2011] [Indexed: 01/31/2023]
Abstract
The general transcription factor IID is a key player in the early events of gene expression. TFIID is a multisubunit complex composed of the TATA binding protein and at least 13 TBP associated factors (TAfs) which recognize the promoter of protein coding genes in an activator dependant way. This review highlights recent findings on the molecular architecture and dynamics of TFIID. The structural analysis of functional transcription complexes formed by TFIID, TFIIA, activators and/or promoter DNA illuminates the faculty of TFIID to adjust to various promoter architectures and highlights its role as a platform for preinitiation complex assembly.
Collapse
Affiliation(s)
- Gabor Papai
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), U964 Inserm, UMR7104 CNRS-Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch, France
| | | | | |
Collapse
|
29
|
Yao J, Fetter RD, Hu P, Betzig E, Tjian R. Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev 2011; 25:569-80. [PMID: 21357673 DOI: 10.1101/gad.2021411] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent findings implicate alternate core promoter recognition complexes in regulating cellular differentiation. Here we report a spatial segregation of the alternative core factor TAF3, but not canonical TFIID subunits, away from the nuclear periphery, where the key myogenic gene MyoD is preferentially localized in myoblasts. This segregation is correlated with the differential occupancy of TAF3 versus TFIID at the MyoD promoter. Loss of this segregation by modulating either the intranuclear location of the MyoD gene or TAF3 protein leads to altered TAF3 occupancy at the MyoD promoter. Intriguingly, in differentiated myotubes, the MyoD gene is repositioned to the nuclear interior, where TAF3 resides. The specific high-affinity recognition of H3K4Me3 by the TAF3 PHD (plant homeodomain) finger appears to be required for the sequestration of TAF3 to the nuclear interior. We suggest that intranuclear sequestration of core transcription components and their target genes provides an additional mechanism for promoter selectivity during differentiation.
Collapse
Affiliation(s)
- Jie Yao
- Janelia Farm Research Campus, The Single Cell Biochemistry Consortium, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | | | | | | | | |
Collapse
|
30
|
Kim HJ, Ko MS, Kim HK, Cho WJ, Lee SH, Lee BJ, Park JW. Transcription factor Sp1 regulates basal transcription of the human DRG2 gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:184-90. [PMID: 21296692 DOI: 10.1016/j.bbagrm.2011.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 11/30/2022]
Abstract
Developmentally regulated GTP-binding protein 2 (DRG2) is an evolutionarily conserved GTP-binding protein. DRG2 mRNA expression has been confirmed in many animal and human tissues. DRG2 is thought to play an essential role in the control of cell growth and differentiation. However, transcriptional regulation of DRG2 is largely unknown. To investigate the mechanisms controlling DRG2 expression, we cloned 1509bp of the 5'-flanking sequence of this gene. Deletion analysis showed that the region between -113 and -70 is essential for the basal level expression of the DRG2 gene in K562 human erythroleukemic cells. Mutation of a putative stimulating protein 1 (Sp1) regulatory site located at position -108 resulted in a significant decline in DRG2 promoter activity. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that Sp1 binds to this site. Knockdown of Sp1 expression using siRNA inhibited the promoter activation as well as the endogenous DRG2 transcriptional level. Taken together, these results demonstrate that basal expression level of DRG2 is regulated by the Sp1 transcription factor.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 2011; 11:535-53. [PMID: 21243637 DOI: 10.1002/pmic.201000553] [Citation(s) in RCA: 524] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/21/2010] [Accepted: 11/02/2010] [Indexed: 01/09/2023]
Abstract
In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation.
Collapse
Affiliation(s)
- Karlie A Neilson
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mosley AL, Sardiu ME, Pattenden SG, Workman JL, Florens L, Washburn MP. Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes. Mol Cell Proteomics 2010; 10:M110.000687. [PMID: 21048197 DOI: 10.1074/mcp.m110.000687] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports.
Collapse
Affiliation(s)
- Amber L Mosley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
33
|
Eeckhoute J, Métivier R, Salbert G. Defining specificity of transcription factor regulatory activities. J Cell Sci 2010; 122:4027-34. [PMID: 19910494 DOI: 10.1242/jcs.054916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian transcription factors (TFs) are often involved in differential cell-type- and context-specific transcriptional responses. Recent large-scale comparative studies of TF recruitment to the genome, and of chromatin structure and gene expression, have allowed a better understanding of the general rules that underlie the differential activities of a given TF. It has emerged that chromatin structure dictates the differential binding of a given TF to cell-type-specific cis-regulatory elements. The subsequent regulation of TF activity then ensures the functional activation of only the precise subset of all regulatory sites bound by the TF that are required to mediate appropriate gene expression. Ultimately, the organization of the genome within the nucleus, and crosstalk between different cis-regulatory regions involved in gene regulation, also participate in establishing a specific transcriptional program. In this Commentary, we discuss how the integration of these different and probably intimately linked regulatory mechanisms allow for TF cell-type- and context-specific modulation of gene expression.
Collapse
Affiliation(s)
- Jéröme Eeckhoute
- Université de Rennes I, CNRS, UMR 6026, Equipe SPARTE, 35042 Rennes Cedex, France.
| | | | | |
Collapse
|
34
|
Goodrich JA, Tjian R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat Rev Genet 2010; 11:549-58. [PMID: 20628347 DOI: 10.1038/nrg2847] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The eukaryotic core promoter recognition complex was generally thought to play an essential but passive role in the regulation of gene expression. However, recent evidence now indicates that core promoter recognition complexes together with 'non-prototypical' subunits may have a vital regulatory function in driving cell-specific programmes of transcription during development. Furthermore, new roles for components of these complexes have been identified beyond development; for example, in mediating interactions with chromatin and in maintaining active gene expression across cell divisions.
Collapse
Affiliation(s)
- James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Colorado 80309, USA
| | | |
Collapse
|
35
|
Zhang Y, Wen Z, Washburn MP, Florens L. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem 2010; 82:2272-81. [PMID: 20166708 DOI: 10.1021/ac9023999] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative shotgun proteomics is dependent on the detection, identification, and quantitative analysis of peptides. An issue arises with peptides that are shared between multiple proteins. What protein did they originate from and how should these shared peptides be used in a quantitative proteomics workflow? To systematically evaluate shared peptides in label-free quantitative proteomics, we devised a well-defined protein sample consisting of known concentrations of six albumins from different species, which we added to a highly complex yeast lysate. We used the spectral counts based normalized spectral abundance factor (NSAF) as the starting point for our analysis and compared an exhaustive list of possible combinations of parameters to determine what was the optimal approach for dealing with shared peptides and shared spectral counts. We showed that distributing shared spectral counts based on the number of unique spectral counts led to the most accurate and reproducible results.
Collapse
Affiliation(s)
- Ying Zhang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
36
|
Kalogeropoulou M, Voulgari A, Kostourou V, Sandaltzopoulos R, Dikstein R, Davidson I, Tora L, Pintzas A. TAF4b and Jun/activating protein-1 collaborate to regulate the expression of integrin alpha6 and cancer cell migration properties. Mol Cancer Res 2010; 8:554-68. [PMID: 20353996 DOI: 10.1158/1541-7786.mcr-09-0159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The TAF4b subunit of the transcription factor IID, which has a central role in transcription by polymerase II, is involved in promoter recognition by selective recruitment of activators. The activating protein-1 (AP-1) family members participate in oncogenic transformation via gene regulation. Utilizing immunoprecipitation of endogenous protein complexes, we documented specific interactions between Jun family members and TATA box binding protein-associated factors (TAF) in colon HT29 adenocarcinoma cells. Particularly, TAF4b and c-Jun were found to colocalize and interact in the nucleus of advanced carcinoma cells and in cells with epithelial-to-mesenchymal transition (EMT) characteristics. TAF4b was found to specifically regulate the AP-1 target gene involved in EMT integrin alpha6, thus altering related cellular properties such as migration potential. Using a chromatin immunoprecipitation approach in colon adenocarcinoma cell lines, we further identified a synergistic role for TAF4b and c-Jun and other AP-1 family members on the promoter of integrin alpha6, underlining the existence of a specific mechanism related to gene expression control. We show evidence for the first time of an interdependence of TAF4b and AP-1 family members in cell type-specific promoter recognition and initiation of transcription in the context of cancer progression and EMT.
Collapse
Affiliation(s)
- Margarita Kalogeropoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Layer JH, Miller SG, Weil PA. Direct transactivator-transcription factor IID (TFIID) contacts drive yeast ribosomal protein gene transcription. J Biol Chem 2010; 285:15489-15499. [PMID: 20189987 DOI: 10.1074/jbc.m110.104810] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factor IID (TFIID) plays a key role in regulating eukaryotic gene expression by directly binding promoters and enhancer-bound transactivator proteins. However, the precise mechanisms and outcomes of transactivator-TFIID interaction remain unclear. Transcription of yeast ribosomal protein genes requires TFIID and the DNA-binding transactivator Rap1. We have previously shown that Rap1 directly binds to the TFIID complex through interaction with its TATA-binding protein-associated factor (Taf) subunits Taf4, -5, and -12. Here, we identify and characterize the Rap1 binding domains (RBDs) of Taf4 and Taf5. These RBDs are essential for viability but dispensable for Taf-Taf interactions and TFIID stability. Cells expressing altered Rap1 binding domains exhibit conditional growth, synthetic phenotypes when expressed in combination or with altered Rap1, and are selectively defective in ribosomal protein gene transcription. Taf4 and Taf5 proteins with altered RBDs bind Rap1 with reduced affinity. We propose that collectively the Taf4, Taf5, and Taf12 subunits of TFIID represent the physical and functional targets for Rap1 interaction and, furthermore, that these interactions drive ribosomal protein gene transcription.
Collapse
Affiliation(s)
- Justin H Layer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - Scott G Miller
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615.
| |
Collapse
|
38
|
Abstract
Animal growth and development depend on the precise control of gene expression at the level of transcription. A central role in the regulation of developmental transcription is attributed to transcription factors that bind DNA enhancer elements, which are often located far from gene transcription start sites. Here, we review recent studies that have uncovered significant regulatory functions in developmental transcription for the TFIID basal transcription factors and for the DNA core promoter elements that are located close to transcription start sites.
Collapse
Affiliation(s)
- Uwe Ohler
- Institute for Genome Sciences & Policy, Departments of Biostatistics & Bioinformatics and Computer Science, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
39
|
D'Alessio JA, Wright KJ, Tjian R. Shifting players and paradigms in cell-specific transcription. Mol Cell 2009; 36:924-31. [PMID: 20064459 PMCID: PMC2807468 DOI: 10.1016/j.molcel.2009.12.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/08/2009] [Indexed: 01/28/2023]
Abstract
Historically, developmental-stage- and tissue-specific patterns of gene expression were assumed to be determined primarily by DNA regulatory sequences and their associated activators, while the general transcription machinery including core promoter recognition complexes, coactivators, and chromatin modifiers was held to be invariant. New evidence suggests that significant changes in these general transcription factors including TFIID, BAF, and Mediator may facilitate global changes in cell-type-specific transcription.
Collapse
Affiliation(s)
- Joseph A D'Alessio
- Howard Hughes Medical Institute, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
40
|
Iwata JI, Hosokawa R, Sanchez-Lara PA, Urata M, Slavkin H, Chai Y. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J Biol Chem 2009; 285:4975-82. [PMID: 19959467 DOI: 10.1074/jbc.m109.035105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (Tgf-beta) signaling is crucial for regulating craniofacial development. Loss of Tgf-beta signaling results in defects in cranial neural crest cells (CNCC), but the mechanism by which Tgf-beta signaling regulates bone formation in CNCC-derived osteogenic cells remains largely unknown. In this study, we discovered that Tgf-beta regulates the basal transcriptional regulatory machinery to control intramembranous bone development. Specifically, basal transcription factor Taf4b is down-regulated in the CNCC-derived intramembranous bone in Tgfbr2(fl/fl);Wnt1-Cre mice. Tgf-beta specifically induces Taf4b expression. Moreover, small interfering RNA knockdown of Taf4b results in decreased cell proliferation and altered osteogenic differentiation in primary mouse embryonic maxillary mesenchymal cells, as seen in Tgfbr2 mutant cells. In addition, we show that Taf1 is decreased at the osteogenic initiation stage in the maxilla of Tgfbr2 mutant mice. Furthermore, small interfering RNA knockdown of Taf4b and Taf1 together in primary mouse embryonic maxillary mesenchymal cells results in up-regulated osteogenic initiator Runx2 expression, with decreased cell proliferation and altered osteogenic differentiation. Our results indicate a critical function of Tgf-beta-mediated basal transcriptional factors in regulating osteogenic cell proliferation and differentiation in CNCC-derived osteoprogenitor cells during intramembranous bone formation.
Collapse
Affiliation(s)
- Jun-ichi Iwata
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sardiu ME, Gilmore JM, Carrozza MJ, Li B, Workman JL, Florens L, Washburn MP. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics. PLoS One 2009; 4:e7310. [PMID: 19806189 PMCID: PMC2751824 DOI: 10.1371/journal.pone.0007310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/07/2009] [Indexed: 11/19/2022] Open
Abstract
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.
Collapse
Affiliation(s)
- Mihaela E. Sardiu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Joshua M. Gilmore
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael J. Carrozza
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Bing Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Takahashi H, Martin-Brown S, Washburn MP, Florens L, Conaway JW, Conaway RC. Proteomics reveals a physical and functional link between hepatocyte nuclear factor 4alpha and transcription factor IID. J Biol Chem 2009; 284:32405-12. [PMID: 19805548 DOI: 10.1074/jbc.m109.017954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteomic analyses have contributed substantially to our understanding of diverse cellular processes. Improvements in the sensitivity of mass spectrometry approaches are enabling more in-depth analyses of protein-protein networks and, in some cases, are providing surprising new insights into well established, longstanding problems. Here, we describe such a proteomic analysis that exploits MudPIT mass spectrometry and has led to the discovery of a physical and functional link between the orphan nuclear receptor hepatocyte nuclear factor 4alpha (HNF4alpha) and transcription factor IID (TFIID). A systematic characterization of the HNF4alpha-TFIID link revealed that the HNF4alpha DNA-binding domain binds directly to the TATA box-binding protein (TBP) and, through this interaction, can target TBP or TFIID to promoters containing HNF4alpha-binding sites in vitro. Supporting the functional significance of this interaction, an HNF4alpha mutation that blocks binding of TBP to HNF4alpha interferes with HNF4alpha transactivation activity in cells. These findings identify an unexpected role for the HNF4alpha DNA-binding domain in mediating key regulatory interactions and provide new insights into the roles of HNF4alpha and TFIID in RNA polymerase II transcription.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
43
|
Liu WL, Coleman RA, Ma E, Grob P, Yang JL, Zhang Y, Dailey G, Nogales E, Tjian R. Structures of three distinct activator-TFIID complexes. Genes Dev 2009; 23:1510-21. [PMID: 19571180 DOI: 10.1101/gad.1790709] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequence-specific DNA-binding activators, key regulators of gene expression, stimulate transcription in part by targeting the core promoter recognition TFIID complex and aiding in its recruitment to promoter DNA. Although it has been established that activators can interact with multiple components of TFIID, it is unknown whether common or distinct surfaces within TFIID are targeted by activators and what changes if any in the structure of TFIID may occur upon binding activators. As a first step toward structurally dissecting activator/TFIID interactions, we determined the three-dimensional structures of TFIID bound to three distinct activators (i.e., the tumor suppressor p53 protein, glutamine-rich Sp1 and the oncoprotein c-Jun) and compared their structures as determined by electron microscopy and single-particle reconstruction. By a combination of EM and biochemical mapping analysis, our results uncover distinct contact regions within TFIID bound by each activator. Unlike the coactivator CRSP/Mediator complex that undergoes drastic and global structural changes upon activator binding, instead, a rather confined set of local conserved structural changes were observed when each activator binds holo-TFIID. These results suggest that activator contact may induce unique structural features of TFIID, thus providing nanoscale information on activator-dependent TFIID assembly and transcription initiation.
Collapse
Affiliation(s)
- Wei-Li Liu
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cler E, Papai G, Schultz P, Davidson I. Recent advances in understanding the structure and function of general transcription factor TFIID. Cell Mol Life Sci 2009; 66:2123-34. [PMID: 19308322 PMCID: PMC11115924 DOI: 10.1007/s00018-009-0009-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 01/18/2023]
Abstract
The general transcription factor TFIID is a macromolecular complex comprising the TATA-binding protein (TBP) and a set of 13-14 TBP associated factors (TAFs). This review discusses biochemical, genetic and electron microscopic data acquired over the past years that provide a model for the composition, organisation and assembly of TFIID. We also revisit ideas on how TFIID is recruited to the promoters of active and possibly repressed genes. Recent observations show that recognition of acetylated and methylated histone residues by structural domains in several TAFs plays an important role. Finally, we highlight several genetic studies suggesting that TFIID is required for initiation of transcription, but not for maintaining transcription once a promoter is in an active state.
Collapse
Affiliation(s)
- Emilie Cler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Gabor Papai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| |
Collapse
|
45
|
Freiman RN. Specific variants of general transcription factors regulate germ cell development in diverse organisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:161-6. [PMID: 19437618 DOI: 10.1016/j.bbagrm.2009.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the reductive divisions of meiosis, sexually reproducing organisms have gained the ability to produce specialized haploid cells called germ cells that fuse to establish the diploid genome of the resulting progeny. The totipotent nature of these germ cells is highlighted by their ability to provide a single fertilized egg cell with all the genetic information necessary to develop the complete repertoire of cell types of the future organism. Thus, the production of these germ cells must be tightly regulated to ensure the continued success of the germ line in future generations. One surprising germ cell development mechanism utilizes variation of the global transcriptional machinery, such as TFIID and TFIIA. Like histone variation, general transcription factor variation serves to produce gonadal-restricted or -enriched expression of selective transcriptional regulatory factors required for establishing and/or maintaining the germ line of diverse organisms. This strategy is observed among invertebrates and vertebrates, and perhaps plants, suggesting that a common theme in germ cell evolution is the diversification of selective promoter initiation factors to regulate critical gonadal-specific programs of gene expression required for sexual reproduction. This review discusses the identification and characterization of a subset of these specialized general transcription factors in diverse organisms that share a common goal of germ line regulation through transcriptional control at its most fundamental level.
Collapse
Affiliation(s)
- Richard N Freiman
- Department of Molecular and Cell Biology, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA.
| |
Collapse
|
46
|
Papai G, Tripathi MK, Ruhlmann C, Werten S, Crucifix C, Weil PA, Schultz P. Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID. Structure 2009; 17:363-73. [PMID: 19278651 DOI: 10.1016/j.str.2009.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/19/2008] [Accepted: 01/05/2009] [Indexed: 11/28/2022]
Abstract
The general transcription factor TFIID is a large multisubunit complex required for the transcription of most protein-encoding genes by RNA polymerase II. Taking advantage of a TFIID preparation partially depleted in the initiator-binding Taf2p subunit, we determined the conformational and biochemical variations of the complex by electron tomography and cryo-electron microscopy of single molecules. Image analysis revealed the extent of conformational flexibility of the complex and the selection of the most homogeneous TFIID subpopulation allowed us to determine an improved structural model at 23 Angstroms resolution. This study also identified two subpopulations of Taf2p-containing and Taf2p-depleted TFIID molecules. By comparing these two TFIID species we could infer the position of Taf2p, which was confirmed by immunolabeling using a subunit-specific antibody. Mapping the position of this crucial subunit in the vicinity of Taf1p and of TBP sheds new light on its role in promoter recognition.
Collapse
Affiliation(s)
- Gabor Papai
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/ULP, 67404 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Li VC, Davis JC, Lenkov K, Bolival B, Fuller MT, Petrov DA. Molecular evolution of the testis TAFs of Drosophila. Mol Biol Evol 2009; 26:1103-16. [PMID: 19244474 DOI: 10.1093/molbev/msp030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The basal transcription machinery is responsible for initiating transcription at core promoters. During metazoan evolution, its components have expanded in number and diversified to increase the complexity of transcriptional regulation in tissues and developmental stages. To explore the evolutionary events and forces underlying this diversification, we analyzed the evolution of the Drosophila testis TAFs (TBP-associated factors), paralogs of TAFs from the basal transcription factor TFIID that are essential for normal transcription during spermatogenesis of a large set of specific genes involved in terminal differentiation of male gametes. There are five testis-specific TAFs in Drosophila, each expressed only in primary spermatocytes and each a paralog of a different generally expressed TFIID subunit. An examination of the presence of paralogs across taxa as well as molecular clock dating indicates that all five testis TAFs likely arose within a span of approximately 38 My 63-250 Ma by independent duplication events from their generally expressed paralogs. Furthermore, the evolution of the testis TAFs has been rapid, with apparent further accelerations in multiple Drosophila lineages. Analysis of between-species divergence and intraspecies polymorphism indicates that the major forces of evolution on these genes have been reduced purifying selection, pervasive positive selection, and coevolution. Other genes that exhibit similar patterns of evolution in the Drosophila lineages are also characterized by enriched expression in the testis, suggesting that the pervasive positive selection acting on the tTAFs is likely to be related to their expression in the testis.
Collapse
Affiliation(s)
- Victor C Li
- Harvard Medical School, Biological and Biomedical Sciences Program, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Mosley AL, Florens L, Wen Z, Washburn MP. A label free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus. J Proteomics 2008; 72:110-20. [PMID: 19038371 DOI: 10.1016/j.jprot.2008.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 01/09/2023]
Abstract
To gain insight into the nuclear proteome of Saccharomyces cerevisiae, nuclei were isolated and fractionated via sucrose gradient sedimentation. The resulting fractions were analyzed using multidimensional protein identification technology and the detected proteins were quantified using normalized spectral counts. A large number of low abundance proteins, many of which are involved in transcriptional regulation, were recovered. Sucrose gradient elution profiles of known protein complex components demonstrated that this approach may provide insight into the question of what percentage of the total population of a protein is in one complex, versus another protein complex, or exists as a free protein.
Collapse
Affiliation(s)
- Amber L Mosley
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, United States
| | | | | | | |
Collapse
|
49
|
Carrera I, Treisman JE. Message in a nucleus: signaling to the transcriptional machinery. Curr Opin Genet Dev 2008; 18:397-403. [PMID: 18678250 DOI: 10.1016/j.gde.2008.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Tissue differentiation and signal transduction involve dramatic changes in gene expression. These changes can be brought about by the expression or activation of sequence-specific transcription factors. In order to regulate their target genes, such factors must navigate the intricate chromatin environment and engage the complex basal transcriptional machinery. We discuss three mechanisms through which signaling pathways can interact with complexes that alter chromatin structure or recruit RNA polymerase II. Signals that promote differentiation may alter the properties of such transcriptional regulatory complexes by incorporating tissue-specific subunits. Alternatively, adaptor subunits specialized to interact with specific transcription factors may allow a single complex to respond to multiple signals. Finally, individual regulatory proteins may integrate a variety of signals, allowing crosstalk between pathways.
Collapse
Affiliation(s)
- Inés Carrera
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
50
|
Solomon SS, Majumdar G, Martinez-Hernandez A, Raghow R. A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci 2008; 83:305-12. [PMID: 18664368 DOI: 10.1016/j.lfs.2008.06.024] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/16/2008] [Accepted: 06/19/2008] [Indexed: 02/02/2023]
Abstract
Specificity protein 1 (Sp1) belongs to a family of ubiquitously expressed, C(2)H(2)-type zinc finger-containing DNA binding proteins that activate or repress transcription of many genes in response to physiological and pathological stimuli. There is emerging evidence to indicate that in addition to functioning as 'housekeeping' transcription factors, members of Sp family may be key mediators of gene expression induced by insulin and other hormones. The founding member of the family, Sp1, by virtue of its multi-domain organization, potential for posttranslational modifications and interactions with numerous transcription factors, represents an ideal mediator of nuclear signaling in response to hormones. Insulin regulates the sub-cellular localization, stability and trans-activation potential of Sp1 by dynamically modulating its post-translational modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) or phosphate residues. We briefly review the recent literature demonstrating that an involvement of Sp-family of transcription factors in the regulation of differential gene expression in response to hormones is more common than previously appreciated and may represent a key regulatory mechanism.
Collapse
Affiliation(s)
- Solomon S Solomon
- Research Service, VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA.
| | | | | | | |
Collapse
|