1
|
Danilowicz C, Meron A, Prentiss M. During recombinase-mediated homology recognition RecQ helicases inhibit formation of toxic long-lived D-loops that could promote genomic instability. Nucleic Acids Res 2025; 53:gkaf426. [PMID: 40377216 PMCID: PMC12082448 DOI: 10.1093/nar/gkaf426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/21/2025] [Accepted: 05/14/2025] [Indexed: 05/18/2025] Open
Abstract
Mutations in RecQ family helicases underlie human genetic disorders associated with genomic instability and cancer predisposition, but questions remain about how properly functioning RecQ reduces these deleterious effects. Importantly, some of the deleterious effects may result from incorrect repair of DNA double-strand breaks (DSBs) by recombinase proteins. Displacement loops (D-loops) are three-strand intermediates formed by recombinases during repair of DSB. RecQ helicases might enhance genome stability by disassembling incorrect recombinase-mediated D-loops formed between mismatched sequences and/or between short regions of accidental homology. We used bulk FRET and gel electrophoresis assays to probe the effects of RecQ family helicases in the context of ongoing recombinase-mediated D-loop formation. We found that RecQ does not differentially promote disassembly of short D-loops or D-loops that include mismatched base pairs. Thus, RecQ does not reduce genomic instability by discriminating against incorrect D-loops. In contrast, our results suggest that RecQ intervenes during D-loop formation to limit the length of recombinase-mediated D-loops. Without that intervention, D-loops can become so long that they do not spontaneously reverse. We suggest that RecQ prevents undesirable long-lived connections between chromosomes that could compromise chromosome metabolism and/or segregation and promote genomic instability.
Collapse
Affiliation(s)
- Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Athalia Meron
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
2
|
Zhang L, Wang E, Wu L, Zhang J, You S, Su R, Qi W. Rational Design of UvsX Recombinase Variants for Enhanced Performance in Recombinase Polymerase Amplification Applications. Biochemistry 2025; 64:2025-2038. [PMID: 40261914 DOI: 10.1021/acs.biochem.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Homologous recombination is a vital biological process for DNA repair, genomic stability, and genetic diversity, driven by the RecA/Rad51 recombinase family. However, as a T4 bacteriophage recombinase homologous to RecA/Rad51, UvsX has limited in vitro performance during recombinase polymerase amplification (RPA) due to ATP utilization and DNA affinity. In this study, UvsX was rationally engineered to enhance these properties through homology modeling, virtual saturation mutations, and consensus mutation strategies. Targeted mutagenesis produced UvsX variants (E198N, E198R, E198K, and K35G) with a 16 ± 4% to 39 ± 6% improvement in RPA activity, while the double mutant K35G/E198R showed an increase of up to 43 ± 4%. Structural analysis revealed that the K35G/E198R mutation enlarged ATP-binding pockets and increased the positive surface potential of DNA-binding sites, resulting in a 12 ± 4% improvement in ATP utilization and more ADP and less AMP generated, a 10 ± 2% enhancement in DNA interaction compared to the wild-type, and better inhibitor tolerance. These findings establish a foundation for the rational optimization of recombinases in nucleic acid amplification and promote their potential for industrial RPA applications.
Collapse
Affiliation(s)
- Lin Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Enjie Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lvping Wu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Lee EG, Kim KH. Transposition of transposable element IS1 in Edwardsiella piscicida mutant generated by CRISPR/Cas9 along with λ-Red recombineering system. Res Microbiol 2025:104297. [PMID: 40185317 DOI: 10.1016/j.resmic.2025.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
This study aimed to investigate unintended mutations introduced by the CRISPR/Cas9 genome editing system in Edwardsiella piscicida. Whole-genome sequencing was conducted on the wild-type E. piscicida NH1 and its alanine racemase knockout mutants (E. piscicida Δalr325 NH1 and E. piscicida Δalr50 NH1) generated using CRISPR/Cas9 with a λ-Red recombineering system. Comparative genomic analyses revealed that the insertion sequence 1 (IS1) transpositions occurred in the CRISPR/Cas9-edited mutants, disrupting the type I restriction-modification system subunit M gene, in addition to the targeted gene deletion. Interestingly, no IS1 transpositions were detected in mutants produced via conventional plasmid-based allelic exchange, indicating the potential link between CRISPR/Cas9-mediated editing and transposition events. These results suggest that genome editing via CRISPR/Cas9 could trigger IS1 transposition, potentially due to double-stranded DNA breaks. The lack of sequence similarity between the single guide RNA (sgRNA) and the transposed regions suggests that transpositions are not CRISPR/Cas9 off-target effects. This study provides evidence of interactions between mobile genetic elements and genome editing systems, requiring further investigation into their underlying mechanisms.
Collapse
Affiliation(s)
- Eun Gyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
4
|
Maruta G, Maeoka H, Tsunoda T, Akiyoshi K, Takagi S, Shirasawa S, Ishikura S. RAD52-mediated repair of DNA double-stranded breaks at inactive centromeres leads to subsequent apoptotic cell death. Nucleic Acids Res 2024; 52:12961-12975. [PMID: 39360606 PMCID: PMC11602138 DOI: 10.1093/nar/gkae852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Centromeres, where the kinetochore complex binds, are susceptible to damages including DNA double-stranded breaks (DSBs). Here, we report the functional significance and the temporally and spatially distinct regulation of centromeric DSB repair via the three pathways of non-homologous end joining (NHEJ), homologous recombination (HR) and single-strand annealing (SSA). The SSA factor RAD52 is most frequently recruited to centromeric DSB sites compared with the HR factor RAD51 and the NHEJ factor DNA ligase IV (LIG4), indicating that SSA plays predominant roles in centromeric DSB repair. Upon centromeric DSB induction, LIG4 is recruited to both active centromeres, where kinetochore complex binds, and inactive centromeres. In contrast, RAD51 and RAD52 are recruited only to inactive centromeres. These results indicate that DSBs at active centromeres are repaired through NHEJ, whereas the three pathways of NHEJ, HR and SSA are involved in DSB repair at inactive centromeres. Furthermore, siRNA-mediated depletion of either LIG4 or RAD51 promotes cell death after centromeric DSB induction, whereas RAD52 depletion inhibits it, suggesting that HR and NHEJ are required for appropriate centromeric DSB repair, whereas SSA-mediated centromeric DSB repair leads to subsequent cell death. Thus, SSA-mediated DSB repair at inactive centromeres may cause centromere dysfunction through error-prone repair.
Collapse
Affiliation(s)
- Gen Maruta
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Department of Anesthesiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hisanori Maeoka
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Center for Advanced Molecular Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kozaburo Akiyoshi
- Department of Anesthesiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Satoshi Takagi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Center for Advanced Molecular Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
- Center for Advanced Molecular Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
5
|
Ito K, Maki T, Kanamaru S, Takahashi M, Iwasaki H. The Swi5-Sfr1 complex regulates Dmc1- and Rad51-driven DNA strand exchange proceeding through two distinct three-stranded intermediates by different mechanisms. Nucleic Acids Res 2024; 52:12517-12533. [PMID: 39340300 PMCID: PMC11551746 DOI: 10.1093/nar/gkae841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
In eukaryotes, Dmc1 and Rad51 are key proteins of homologous recombination. The Swi5-Sfr1 complex in fission yeast, a conserved auxiliary factor, stimulates DNA strand exchange driven by both Dmc1 and Rad51. Interestingly, biochemical analysis suggested that Swi5-Sfr1 regulates strand exchange activities of these recombinases differently, but the mechanisms were unclear. We previously developed a real-time system to analyze Rad51-driven DNA strand exchange and identified two topologically distinct three-stranded intermediates (complex 1 (C1) and complex 2 (C2)). Swi5-Sfr1 facilitates the C1-C2 transition and releases single-stranded DNA (ssDNA) from C2, acting as a strand exchange activator. In this study, we investigated fission yeast Dmc1-driven DNA strand exchange and the role of Swi5-Sfr1 in Dmc1 activity in real-time. Kinetic analysis revealed a three-step model for the Dmc1-driven reaction, similar to that of Rad51. Although Swi5-Sfr1 stimulated the Dmc1-driven reaction, it had a weaker impact than Rad51. Furthermore, Swi5-Sfr1 enhanced the association of Dmc1 with ssDNA by promoting filament nucleus formation, acting as a mediator, unlike its role with Rad51. This stimulation mechanism also differs from that of Ca2+ or ATP analog, AMP-PNP. Our findings suggest that Swi5-Sfr1 stimulates strand exchange activities of Dmc1 and Rad51 via different reaction steps.
Collapse
Affiliation(s)
- Kentaro Ito
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Shuji Kanamaru
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Masayuki Takahashi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
6
|
Danilowicz C, Fu J, Prentiss M. Insight into RecA-mediated repair of double strand breaks is provided by probing how contiguous heterology affects recombination. J Biol Chem 2024; 300:107887. [PMID: 39395797 PMCID: PMC11570958 DOI: 10.1016/j.jbc.2024.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Homologous recombination can promote correct repair of double strand breaks in DNA by aligning a sequence region in the broken chromosome with the corresponding sequence region in an unbroken chromosome. D-loops join the broken and unbroken chromosomes during homology testing. Previous work studied how some mismatches affect the stability of D-loops, but they did not probe whether the D-loops disrupt regions of contiguous mismatches or simply bypass them. Furthermore, previous work has not considered how the length of flanking homology affects D-loop disruption of regions of contiguous mismatches. Finally, there are conflicts about the polarity of D-loop extension. We demonstrate that with or without ATP hydrolysis invading strands with six contiguous mismatches and sufficient flanking homology readily form D-loops that disrupt the structure of the mismatched region and incorporate both flanking homologous regions. Unsurprisingly, the probability that D-loops will incorporate both flanking homologous regions decreases as the number of mismatched bases increases. Furthermore, though D-loops may progress through homologous regions initially and dominantly in the 5' to 3' direction with respect to the single strand in the broken chromosome, our results suggest that progress through contiguous mismatches proceeds dominantly in the 3' to 5' direction. These results may reconcile previous conflicts about the polarity of D-loop extension. Additionally, the results suggest that homology recognition is not characterized by any simple iterative decision tree model that considers each homology testing step separately. Instead, homology recognition involves collective interactions. Finally, we consider implications for double strand break repair.
Collapse
Affiliation(s)
- Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan Fu
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
7
|
Sridalla K, Woodhouse MV, Hu J, Scheer J, Ferlez B, Crickard JB. The translocation activity of Rad54 reduces crossover outcomes during homologous recombination. Nucleic Acids Res 2024; 52:7031-7048. [PMID: 38828785 PMCID: PMC11229335 DOI: 10.1093/nar/gkae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that requires the selection of an appropriate DNA sequence to facilitate repair. Selection occurs during a homology search that must be executed rapidly and with high fidelity. Failure to efficiently perform the homology search can result in complex intermediates that generate genomic rearrangements, a hallmark of human cancers. Rad54 is an ATP dependent DNA motor protein that functions during the homology search by regulating the recombinase Rad51. How this regulation reduces genomic exchanges is currently unknown. To better understand how Rad54 can reduce these outcomes, we evaluated several amino acid mutations in Rad54 that were identified in the COSMIC database. COSMIC is a collection of amino acid mutations identified in human cancers. These substitutions led to reduced Rad54 function and the discovery of a conserved motif in Rad54. Through genetic, biochemical and single-molecule approaches, we show that disruption of this motif leads to failure in stabilizing early strand invasion intermediates, causing increased crossovers between homologous chromosomes. Our study also suggests that the translocation rate of Rad54 is a determinant in balancing genetic exchange. The latch domain's conservation implies an interaction likely fundamental to eukaryotic biology.
Collapse
Affiliation(s)
- Krishay Sridalla
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell V Woodhouse
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jingyi Hu
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jessica Scheer
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
9
|
Rao A, Ramírez J, Olsen BD. Mechanisms of Self-Diffusion of Linear Associative Polymers Studied by Brownian Dynamics Simulation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ameya Rao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Martinez-Garcia M, White CI, Franklin FCH, Sanchez-Moran E. The Role of Topoisomerase II in DNA Repair and Recombination in Arabidopsis thaliana. Int J Mol Sci 2021; 22:13115. [PMID: 34884922 PMCID: PMC8658145 DOI: 10.3390/ijms222313115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation.
Collapse
Affiliation(s)
| | - Charles I. White
- Génétique, Reproduction et Développement, Faculté de Médecine, UMR CNRS 6293—INSERM U1103—Université Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France;
| | | | | |
Collapse
|
11
|
Influences of ssDNA-RecA Filament Length on the Fidelity of Homologous Recombination. J Mol Biol 2021; 433:167143. [PMID: 34242669 DOI: 10.1016/j.jmb.2021.167143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
Chromosomal double-strand breaks can be accurately repaired by homologous recombination, but genomic rearrangement can result if the repair joins different copies of a repeated sequence. Rearrangement can be advantageous or fatal. During repair, a broken double-stranded DNA (dsDNA) is digested by the RecBCD complex from the 5' end, leaving a sequence gap that separates two 3' single-stranded DNA (ssDNA) tails. RecA binds to the 3' tails forming helical nucleoprotein filaments.A three-strand intermediate is formed when a RecA-bound ssDNA with L nucleotides invades a homologous region of dsDNA and forms a heteroduplex product with a length ≤ L bp. The homology dependent stability of the heteroduplex determines how rapidly and accurately homologous recombination repairs double-strand breaks. If the heteroduplex is sufficiently sequence matched, repair progresses to irreversible DNA synthesis. Otherwise, the heteroduplex should rapidly reverse. In this work, we present in vitro measurements of the L dependent stability of heteroduplex products formed by filaments with 90 ≤ L ≤ 420 nt, which is within the range observedin vivo. We find that without ATP hydrolysis, products are irreversible when L > 50 nt. In contrast, with ATP hydrolysis when L < 160 nt, products reverse in < 30 seconds; however, with ATP hydrolysis when L ≥ 320 nt, some products reverse in < 30 seconds, while others last thousands of seconds. We consider why these two different filament length regimes show such distinct behaviors. We propose that the experimental results combined with theoretical insights suggest that filaments with 250 ≲ L ≲ 8500 nt optimize DSB repair.
Collapse
|
12
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
13
|
Helicase-like functions in phosphate loop containing beta-alpha polypeptides. Proc Natl Acad Sci U S A 2021; 118:2016131118. [PMID: 33846247 DOI: 10.1073/pnas.2016131118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The P-loop Walker A motif underlies hundreds of essential enzyme families that bind nucleotide triphosphates (NTPs) and mediate phosphoryl transfer (P-loop NTPases), including the earliest DNA/RNA helicases, translocases, and recombinases. What were the primordial precursors of these enzymes? Could these large and complex proteins emerge from simple polypeptides? Previously, we showed that P-loops embedded in simple βα repeat proteins bind NTPs but also, unexpectedly so, ssDNA and RNA. Here, we extend beyond the purely biophysical function of ligand binding to demonstrate rudimentary helicase-like activities. We further constructed simple 40-residue polypeptides comprising just one β-(P-loop)-α element. Despite their simplicity, these P-loop prototypes confer functions such as strand separation and exchange. Foremost, these polypeptides unwind dsDNA, and upon addition of NTPs, or inorganic polyphosphates, release the bound ssDNA strands to allow reformation of dsDNA. Binding kinetics and low-resolution structural analyses indicate that activity is mediated by oligomeric forms spanning from dimers to high-order assemblies. The latter are reminiscent of extant P-loop recombinases such as RecA. Overall, these P-loop prototypes compose a plausible description of the sequence, structure, and function of the earliest P-loop NTPases. They also indicate that multifunctionality and dynamic assembly were key in endowing short polypeptides with elaborate, evolutionarily relevant functions.
Collapse
|
14
|
Lee AJ, Endo M, Hobbs JK, Davies AG, Wälti C. Micro-homology intermediates: RecA's transient sampling revealed at the single molecule level. Nucleic Acids Res 2021; 49:1426-1435. [PMID: 33476368 PMCID: PMC7897476 DOI: 10.1093/nar/gkaa1258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 01/21/2023] Open
Abstract
Recombinase A (RecA) is central to homologous recombination. However, despite significant advances, the mechanism with which RecA is able to orchestrate a search for homology remains elusive. DNA nanostructure-augmented high-speed AFM offers the spatial and temporal resolutions required to study the RecA recombination mechanism directly and at the single molecule level. We present the direct in situ observation of RecA-orchestrated alignment of homologous DNA strands to form a stable recombination product within a supporting DNA nanostructure. We show the existence of subtle and short-lived states in the interaction landscape, which suggests that RecA transiently samples micro-homology at the single RecA monomer-level throughout the search for sequence alignment. These transient interactions form the early steps in the search for sequence homology, prior to the formation of stable pairings at >8 nucleotide seeds. The removal of sequence micro-homology results in the loss of the associated transient sampling at that location.
Collapse
Affiliation(s)
- Andrew J Lee
- Bioelectronics, The Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse lane, Leeds LS2 9JT, UK
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Houndsfield Road, Sheffield S3 7RH, UK
| | - A Giles Davies
- Bioelectronics, The Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse lane, Leeds LS2 9JT, UK
| | - Christoph Wälti
- Bioelectronics, The Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse lane, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Mckay A, Burgio G. Harnessing CRISPR-Cas system diversity for gene editing technologies. J Biomed Res 2021; 35:91-106. [PMID: 33797415 PMCID: PMC8038530 DOI: 10.7555/jbr.35.20200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The discovery and utilization of RNA-guided surveillance complexes, such as CRISPR-Cas9, for sequence-specific DNA or RNA cleavage, has revolutionised the process of gene modification or knockdown. To optimise the use of this technology, an exploratory race has ensued to discover or develop new RNA-guided endonucleases with the most flexible sequence targeting requirements, coupled with high cleavage efficacy and specificity. Here we review the constraints of existing gene editing and assess the merits of exploiting the diversity of CRISPR-Cas effectors as a methodology for surmounting these limitations.
Collapse
Affiliation(s)
- Alexander Mckay
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells 2020; 9:E1665. [PMID: 32664329 PMCID: PMC7408370 DOI: 10.3390/cells9071665] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA is the source of genetic information, and preserving its integrity is essential in order to sustain life. The genome is continuously threatened by different types of DNA lesions, such as abasic sites, mismatches, interstrand crosslinks, or single-stranded and double-stranded breaks. As a consequence, cells have evolved specialized DNA damage response (DDR) mechanisms to sustain genome integrity. By orchestrating multilayer signaling cascades specific for the type of lesion that occurred, the DDR ensures that genetic information is preserved overtime. In the last decades, DNA repair mechanisms have been thoroughly investigated to untangle these complex networks of pathways and processes. As a result, key factors have been identified that control and coordinate DDR circuits in time and space. In the first part of this review, we describe the critical processes encompassing DNA damage sensing and resolution. In the second part, we illustrate the consequences of partial or complete failure of the DNA repair machinery. Lastly, we will report examples in which this knowledge has been instrumental to develop novel therapies based on genome editing technologies, such as CRISPR-Cas.
Collapse
Affiliation(s)
- Antonio Carusillo
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
17
|
Boyer B, Danilowicz C, Prentiss M, Prévost C. Weaving DNA strands: structural insight on ATP hydrolysis in RecA-induced homologous recombination. Nucleic Acids Res 2019; 47:7798-7808. [PMID: 31372639 PMCID: PMC6735932 DOI: 10.1093/nar/gkz667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
Homologous recombination is a fundamental process in all living organisms that allows the faithful repair of DNA double strand breaks, through the exchange of DNA strands between homologous regions of the genome. Results of three decades of investigation and recent fruitful observations have unveiled key elements of the reaction mechanism, which proceeds along nucleofilaments of recombinase proteins of the RecA family. Yet, one essential aspect of homologous recombination has largely been overlooked when deciphering the mechanism: while ATP is hydrolyzed in large quantity during the process, how exactly hydrolysis influences the DNA strand exchange reaction at the structural level remains to be elucidated. In this study, we build on a previous geometrical approach that studied the RecA filament variability without bound DNA to examine the putative implication of ATP hydrolysis on the structure, position, and interactions of up to three DNA strands within the RecA nucleofilament. Simulation results on modeled intermediates in the ATP cycle bring important clues about how local distortions in the DNA strand geometries resulting from ATP hydrolysis can aid sequence recognition by promoting local melting of already formed DNA heteroduplex and transient reverse strand exchange in a weaving type of mechanism.
Collapse
Affiliation(s)
- Benjamin Boyer
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Presently in Laboratoire Génomique Bioinformatique et Applications, EA4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
18
|
Lin YH, Chu CC, Fan HF, Wang PY, Cox MM, Li HW. A 5'-to-3' strand exchange polarity is intrinsic to RecA nucleoprotein filaments in the absence of ATP hydrolysis. Nucleic Acids Res 2019; 47:5126-5140. [PMID: 30916331 PMCID: PMC6547424 DOI: 10.1093/nar/gkz189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023] Open
Abstract
RecA is essential to recombinational DNA repair in which RecA filaments mediate the homologous DNA pairing and strand exchange. Both RecA filament assembly and the subsequent DNA strand exchange are directional. Here, we demonstrate that the polarity of DNA strand exchange is embedded within RecA filaments even in the absence of ATP hydrolysis, at least over short DNA segments. Using single-molecule tethered particle motion, we show that successful strand exchange in the presence of ATP proceeds with a 5′-to-3′ polarity, as demonstrated previously. RecA filaments prepared with ATPγS also exhibit a 5′-to-3′ progress of strand exchange, suggesting that the polarity is not determined by RecA disassembly and/or ATP hydrolysis. RecAΔC17 mutants, lacking a C-terminal autoregulatory flap, also promote strand exchange in a 5′-to-3′ polarity in ATPγS, a polarity that is largely lost with this RecA variant when ATP is hydrolyzed. We propose that there is an inherent strand exchange polarity mediated by the structure of the RecA filament groove, associated by conformation changes propagated in a polar manner as DNA is progressively exchanged. ATP hydrolysis is coupled to polar strand exchange over longer distances, and its contribution to the polarity requires an intact RecA C-terminus.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Chia-Chieh Chu
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 11221 Taiwan
| | - Pang-Yen Wang
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin, Madison, 53706, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| |
Collapse
|
19
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 940] [Impact Index Per Article: 156.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Zhao XC, Fu H, Song L, Yang YJ, Zhou EC, Liu GX, Chen XF, Li Z, Wu WQ, Zhang XH. S-DNA and RecA/RAD51-Mediated Strand Exchange in Vitro. Biochemistry 2019; 58:2009-2016. [PMID: 30900876 DOI: 10.1021/acs.biochem.8b01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
S-DNA (stretched DNA) is an elongated base-paired DNA conformation under high tension. Because the RecA/Rad51 family DNA recombinases form helical filaments on DNA and mediate the formation of the DNA triplex (D-loop), in which the DNA is stretched, and because the extension of these nucleoprotein filaments is similar to the extension of S-DNA, S-DNA has long been hypothesized as a possible state of DNA that participants in RecA/Rad51-mediated DNA strand exchange in homologous recombination. Such a hypothesis, however, is still lacking direct experimental studies. In this work, we have studied the polymerization and strand exchange on S-DNA mediated by Escherichia coli RecA, human Rad51, and Saccharomyces cerevisiae Rad51 by single-molecule magnetic tweezers. We report that RecA/Rad51 polymerizes faster on S-DNA than on B-DNA with the same buffer conditions. Furthermore, the RecA/Rad51-mediated DNA triplex forms faster from S-DNA than from B-DNA together with the homologous single-stranded DNA. These results provide evidence that S-DNA can interact with RecA and Rad51 and shed light on the possible functions of S-DNA.
Collapse
Affiliation(s)
- Xiao-Cong Zhao
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Hang Fu
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Lun Song
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Ya-Jun Yang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Er-Chi Zhou
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Guang-Xue Liu
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Xue-Feng Chen
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Zhuo Li
- Third Institute of Oceanography , State Oceanic Administration , Xiamen 361005 , China
| | - Wen-Qiang Wu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology , Henan University , Kaifeng 475001 , China
| | - Xing-Hua Zhang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
21
|
Manikandan K, Prasad D, Srivastava A, Singh N, Dabeer S, Krishnan A, Muniyappa K, Sinha KM. The second messenger cyclic di-AMP negatively regulates the expression of Mycobacterium smegmatis recA and attenuates DNA strand exchange through binding to the C-terminal motif of mycobacterial RecA proteins. Mol Microbiol 2018; 109:600-614. [PMID: 29873124 DOI: 10.1111/mmi.13991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
Cyclic di-GMP and cyclic di-AMP are second messengers produced by a wide variety of bacteria. They influence bacterial cell survival, biofilm formation, virulence and bacteria-host interactions. However, many of their cellular targets and biological effects are yet to be determined. A chemical proteomics approach revealed that Mycobacterium smegmatis RecA (MsRecA) possesses a high-affinity cyclic di-AMP binding activity. We further demonstrate that both cyclic di-AMP and cyclic di-GMP bind specifically to the C-terminal motif of MsRecA and Mycobacterium tuberculosis RecA (MtRecA). Escherichia coli RecA (EcRecA) was devoid of cyclic di-AMP binding but have cyclic di-GMP binding activity. Notably, cyclic di-AMP attenuates the DNA strand exchange promoted by MsRecA as well as MtRecA through the disassembly of RecA nucleoprotein filaments. However, the structure and DNA strand exchange activity of EcRecA nucleoprotein filaments remain largely unaffected. Furthermore, M. smegmatis ΔdisA cells were found to have undetectable RecA levels due to the translational repression of recA mRNA. Consequently, the ΔdisA mutant exhibited enhanced sensitivity to DNA-damaging agents. Altogether, this study points out the importance of sequence diversity among recA genes, the role(s) of cyclic di-AMP and reveals a new mode of negative regulation of recA gene expression, DNA repair and homologous recombination in mycobacteria.
Collapse
Affiliation(s)
- Kasi Manikandan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ankita Srivastava
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Nirpendra Singh
- Central Instrument Facility, University of Delhi South Campus, New Delhi, India
| | - Sadaf Dabeer
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Anuja Krishnan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Krishna Murari Sinha
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| |
Collapse
|
22
|
Gibbs DR, Dhakal S. Single-Molecule Imaging Reveals Conformational Manipulation of Holliday Junction DNA by the Junction Processing Protein RuvA. Biochemistry 2018; 57:3616-3624. [PMID: 29767969 DOI: 10.1021/acs.biochem.8b00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interactions between DNA and motor proteins regulate nearly all biological functions of DNA such as gene expression, DNA replication and repair, and transcription. During the late stages of homologous recombination (HR), the Escherichia coli recombination machinery, RuvABC, resolves the four-way DNA motifs called Holliday junctions (HJs) that are formed during exchange of nucleotide sequences between two homologous duplex DNA. Although the formation of the RuvA-HJ complex is known to be the first critical step in the RuvABC pathway, the mechanism for the binding interaction between RuvA and HJ has remained elusive. Here, using single-molecule fluorescence resonance energy transfer (smFRET) and ensemble analyses, we show that RuvA stably binds to the HJ, halting its conformational dynamics. Our FRET experiments in different ionic environments created by Mg2+ and Na+ ions suggest that RuvA binds to the HJ via electrostatic interaction. Further, while recent studies have indicated that the HR process can be modulated for therapeutic applications by selective targeting of the HJ by chemotherapeutic drugs, we investigated the effect of drug-modified HJ on binding. Using cisplatin as a proof-of-concept drug, we show that RuvA binds to the cisplatin-modified HJ as efficiently as to the unmodified HJ, demonstrating that RuvA accommodates for the cisplatin-introduced charges and/or topological changes on the HJ.
Collapse
Affiliation(s)
- Dalton R Gibbs
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| | - Soma Dhakal
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| |
Collapse
|
23
|
Abstract
The repair of chromosomal double-strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51-mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms. See also the video abstract here: https://youtu.be/vm7-X5uIzS8.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
24
|
Ito K, Murayama Y, Takahashi M, Iwasaki H. Two three-strand intermediates are processed during Rad51-driven DNA strand exchange. Nat Struct Mol Biol 2017; 25:29-36. [PMID: 29323270 DOI: 10.1038/s41594-017-0002-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022]
Abstract
During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5-Sfr1, an evolutionarily conserved recombination activator, facilitates the C1-C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca2+, which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1-C2 transition but does not promote strand exchange. These results reveal that Swi5-Sfr1 and Ca2+ have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament.
Collapse
Affiliation(s)
- Kentaro Ito
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuto Murayama
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.,National Institute of Genetics, Shizuoka, Japan
| | - Masayuki Takahashi
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Iwasaki
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan. .,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
25
|
Chen J, Tang Q, Guo S, Lu C, Le S, Yan J. Parallel triplex structure formed between stretched single-stranded DNA and homologous duplex DNA. Nucleic Acids Res 2017; 45:10032-10041. [PMID: 28973442 PMCID: PMC5622322 DOI: 10.1093/nar/gkx628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/11/2017] [Indexed: 02/01/2023] Open
Abstract
The interaction between the single-stranded DNA and the homologous duplex DNA is essential for DNA homologous repair. Here, we report that parallel triplex structure can form spontaneously between a mechanically extended ssDNA and a homologous dsDNA in protein-free condition. The triplex has a contour length close to that of a B-form DNA duplex and remains stable after force is released. The binding energy between the ssDNA and the homologous dsDNA in the triplex is estimated to be comparable to the basepairing energy in a B-form dsDNA. As ssDNA is in a similar extended conformation within recombinase-coated nucleoprotein filaments, we propose that the parallel triplex may form and serve as an intermediate during recombinase-catalyzed homologous joint formation.
Collapse
Affiliation(s)
- Jin Chen
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Qingnan Tang
- Department of Physics, National University of Singapore, 117542, Singapore
| | - Shiwen Guo
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Chen Lu
- Mechanobiology Institute, National University of Singapore, 117411, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, 117546, Singapore
| | - Shimin Le
- Mechanobiology Institute, National University of Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, 117542, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, 117542, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, 117546, Singapore
| |
Collapse
|
26
|
Danilowicz C, Hermans L, Coljee V, Prévost C, Prentiss M. ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences. Nucleic Acids Res 2017; 45:8448-8462. [PMID: 28854739 PMCID: PMC5737215 DOI: 10.1093/nar/gkx582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/05/2017] [Indexed: 01/30/2023] Open
Abstract
During DNA recombination and repair, RecA family proteins must promote rapid joining of homologous DNA. Repeated sequences with >100 base pair lengths occupy more than 1% of bacterial genomes; however, commitment to strand exchange was believed to occur after testing ∼20-30 bp. If that were true, pairings between different copies of long repeated sequences would usually become irreversible. Our experiments reveal that in the presence of ATP hydrolysis even 75 bp sequence-matched strand exchange products remain quite reversible. Experiments also indicate that when ATP hydrolysis is present, flanking heterologous dsDNA regions increase the reversibility of sequence matched strand exchange products with lengths up to ∼75 bp. Results of molecular dynamics simulations provide insight into how ATP hydrolysis destabilizes strand exchange products. These results inspired a model that shows how pairings between long repeated sequences could be efficiently rejected even though most homologous pairings form irreversible products.
Collapse
Affiliation(s)
| | - Laura Hermans
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Vincent Coljee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UMR 9080, IBPC, Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Maidana SS, Craig PO, Craig MI, Ludwig L, Mauroy A, Thiry E, Romera SA. Evidence of natural interspecific recombinant viruses between bovine alphaherpesviruses 1 and 5. Virus Res 2017; 242:122-130. [DOI: 10.1016/j.virusres.2017.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
28
|
Kochugaeva MP, Shvets AA, Kolomeisky AB. On the Mechanism of Homology Search by RecA Protein Filaments. Biophys J 2017; 112:859-867. [PMID: 28297645 DOI: 10.1016/j.bpj.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022] Open
Abstract
Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein filaments formed on single-stranded segments of DNA. A critical step in the homologous recombination is a search for a corresponding homologous region on DNA, which is called a homology search. Recent single-molecule experiments clarified some aspects of this process, but its molecular mechanisms remain not well understood. We developed a quantitative theoretical approach to analyze the homology search. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the homology search is presented. It is found that the search dynamics depends on the degree of extension of DNA molecules and on the size of RecA nucleoprotein filaments, in agreement with experimental single-molecule measurements of DNA pairing by RecA proteins. Our theoretical calculations, supported by extensive Monte Carlo computer simulations, provide a molecular description of the mechanisms of the homology search.
Collapse
Affiliation(s)
- Maria P Kochugaeva
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Alexey A Shvets
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
29
|
Abstract
Ubiquitous conserved processes that repair DNA damage are essential for the maintenance and propagation of genomes over generations. Then again, inaccuracies in DNA transactions and failures to remove mutagenic lesions cause heritable genome changes. Building on decades of research using genetics and biochemistry, unprecedented quantitative insight into DNA repair mechanisms has come from the new-found ability to measure single proteins in vitro and inside individual living cells. This has brought together biologists, chemists, engineers, physicists, and mathematicians to solve long-standing questions about the way in which repair enzymes search for DNA lesions and form protein complexes that act in DNA repair pathways. Furthermore, unexpected discoveries have resulted from capabilities to resolve molecular heterogeneity and cell subpopulations, provoking new questions about the role of stochastic processes in DNA repair and mutagenesis. These studies are leading to new technologies that will find widespread use in basic research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| |
Collapse
|
30
|
Rapp PB, Omar AK, Shen JJ, Buck ME, Wang ZG, Tirrell DA. Analysis and Control of Chain Mobility in Protein Hydrogels. J Am Chem Soc 2017; 139:3796-3804. [DOI: 10.1021/jacs.6b13146] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter B. Rapp
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Ahmad K. Omar
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Jeff J. Shen
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Maren E. Buck
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - David A. Tirrell
- Division of Chemistry
and
Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
31
|
Lu CH, Li HW. DNA with Different Local Torsional States Affects RecA-Mediated Recombination Progression. Chemphyschem 2017; 18:584-590. [PMID: 28054431 DOI: 10.1002/cphc.201601281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/04/2017] [Indexed: 11/10/2022]
Abstract
DNA topology is thought to affect DNA enzyme activity. The helical structure of duplex DNA dictates the change of topological states during strand separation when DNA is constrained. During the repair of DNA double-stranded breaks, the RecA nucleoprotein filament invades DNA and carries out consecutive strand exchange reactions coupled with duplex DNA strand separation. It has been suggested that torsional strain could be generated and its accumulation could inhibit strand exchange. We used hairpin and nicked DNA substrates to test how torsional strain alters the RecA-mediated strand exchange efficiency. Single-molecule tethered particle motion (TPM) experiments showed that torsionally constrained hairpin DNA substrates returned nearly no successful strand exchange events catalyzed by RecA. Surprisingly, the strand exchange efficiencies increase in the presence of DNA nicks or loop disruption. The dwell time of transient RecA events in hairpin is shorter compared to those found in nicked or fork DNA substrates, which suggests a limited strand exchange progression in hairpin substrates. Our observation shows that RecA generates local torsional strain during strand exchange, and the inability to dissipate this torsional strain inhibits homologous recombination progression. DNA topological states are thus important regulation measures of DNA recombination.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan) (R.O.C
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan) (R.O.C
| |
Collapse
|
32
|
Enhancement of RecA-mediated self-assembly in DNA nanostructures through basepair mismatches and single-strand nicks. Sci Rep 2017; 7:41081. [PMID: 28112216 PMCID: PMC5253629 DOI: 10.1038/srep41081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
The use of DNA as a structural material for nanometre-scale construction has grown extensively over the last decades. The development of more advanced DNA-based materials would benefit from a modular approach enabling the direct assembly of additional elements onto nanostructures after fabrication. RecA-based nucleoprotein filaments encapsulating short ssDNA have been demonstrated as a tool for highly efficient and fully programmable post-hoc patterning of duplex DNA scaffold. However, the underlying assembly process is not fully understood, in particular when patterning complex DNA topologies. Here, we report the effect of basepair-mismatched regions and single-strand nicks in the double-stranded DNA scaffold on the yield of RecA-based assembly. Significant increases in assembly yield are observed upon the introduction of unpaired basepairs directly adjacent to the assembly region. However, when the unpaired regions were introduced further from the assembly site the assembly yield initially decreased as the length of the unpaired region was increased. These results suggest that an unpaired region acts as a kinetic trap for RecA-based nucleoprotein filaments, impeding the assembly mechanism. Conversely, when the unpaired region is located directly adjacent to the assembly site, it leads to an increase in efficiency of RecA patterning owing to increased breathing of the assembly site.
Collapse
|
33
|
Xu J, Zhao L, Xu Y, Zhao W, Sung P, Wang HW. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat Struct Mol Biol 2016; 24:40-46. [PMID: 27941862 DOI: 10.1038/nsmb.3336] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023]
Abstract
The central step in eukaryotic homologous recombination (HR) is ATP-dependent DNA-strand exchange mediated by the Rad51 recombinase. In this process, Rad51 assembles on single-stranded DNA (ssDNA) and generates a helical filament that is able to search for and invade homologous double-stranded DNA (dsDNA), thus leading to strand separation and formation of new base pairs between the initiating ssDNA and the complementary strand within the duplex. Here, we used cryo-EM to solve the structures of human RAD51 in complex with DNA molecules, in presynaptic and postsynaptic states, at near-atomic resolution. Our structures reveal both conserved and distinct structural features of the human RAD51-DNA complexes compared with their prokaryotic counterpart. Notably, we also captured the structure of an arrested synaptic complex. Our results provide new insight into the molecular mechanisms of the DNA homology search and strand-exchange processes.
Collapse
Affiliation(s)
- Jingfei Xu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingyun Zhao
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanyuan Xu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Zhang YW, Nong DG, Dou SX, Li W, Yan Y, Xi XG, Xu CH, Li M. Iterative homology checking and non-uniform stepping during RecA-mediated strand exchange. Biochem Biophys Res Commun 2016; 478:1153-7. [PMID: 27543204 DOI: 10.1016/j.bbrc.2016.08.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
Recombinase-mediated homologous recombination (HR) in which strands are exchanged between two similar or identical DNA molecules is essential for maintaining genome fidelity and generating genetic diversity. It is believed that HR comprises two distinct stages: an initial alignment with stringent homology checking followed by stepwise heteroduplex expansion. If and how homology checking takes place during heteroduplex expansion, however, remains unknown. In addition, the number of base pairs (bp) involved in each step is still under debate. By using single-molecule approaches to catch transient intermediates in RecA-mediated HR with different degrees of homology, we show that (i) the expansion proceeds with step sizes of multiples of 3 bp, (ii) the step sizes follow wide distributions that are similar to that of initial alignment lengths, and (iii) each distribution can be divided into a short-scale and a long-scale part irrespective of the degree of homology. Our results suggest an iterative mechanism of strand exchange in which ssDNA-RecA filament interrogates double-stranded DNA using a short tract (6-15 bp) for quick checking and a long tract (>18 bp) for stringent sequence comparison. The present work provides novel insights into the physical and structural bases of DNA recombination.
Collapse
Affiliation(s)
- Yu-Wei Zhang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Da-Guan Nong
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Li
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Yan
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A & F University, Xi'an, Shaanxi, 712100, China; LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, F-94235, Cachan, France
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
35
|
Camunas-Soler J, Ribezzi-Crivellari M, Ritort F. Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy. Annu Rev Biophys 2016; 45:65-84. [PMID: 27145878 DOI: 10.1146/annurev-biophys-062215-011158] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Departament de Física Fonamental, Universitat de Barcelona, 08028 Barcelona, Spain; .,CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marco Ribezzi-Crivellari
- Departament de Física Fonamental, Universitat de Barcelona, 08028 Barcelona, Spain; .,CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Felix Ritort
- Departament de Física Fonamental, Universitat de Barcelona, 08028 Barcelona, Spain; .,CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
36
|
Shu C, Zhou J, Crickmore N, Li X, Song F, Liang G, He K, Huang D, Zhang J. In vitro template-change PCR to create single crossover libraries: a case study with B. thuringiensis Cry2A toxins. Sci Rep 2016; 6:23536. [PMID: 27097519 PMCID: PMC4838838 DOI: 10.1038/srep23536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 03/09/2016] [Indexed: 11/09/2022] Open
Abstract
During evolution the creation of single crossover chimeras between duplicated paralogous genes is a known process for increasing diversity. Comparing the properties of homologously recombined chimeras with one or two crossovers is also an efficient strategy for analyzing relationships between sequence variation and function. However, no well-developed in vitro method has been established to create single-crossover libraries. Here we present an in vitro template-change polymerase change reaction that has been developed to enable the production of such libraries. We applied the method to two closely related toxin genes from B. thuringiensis and created chimeras with differing properties that can help us understand how these toxins are able to differentiate between insect species.
Collapse
Affiliation(s)
- Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Jianqiao Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Dafang Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
37
|
Carrasco B, Serrano E, Sánchez H, Wyman C, Alonso JC. Chromosomal transformation in Bacillus subtilis is a non-polar recombination reaction. Nucleic Acids Res 2016; 44:2754-68. [PMID: 26786319 PMCID: PMC4824099 DOI: 10.1093/nar/gkv1546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/29/2015] [Indexed: 11/13/2022] Open
Abstract
Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear fashion, but it exerts a minor effect when the divergence is localized at a discrete end. In the nucleotide bound form, RecA shows no apparent preference to initiate recombination at the 3′- or 5′-complementary end of the linear duplex with circular ssDNA, but nucleotide hydrolysis is required when heterology is present at both ends. RecA·dATP initiates pairing of the linear 5′ and 3′ complementary ends, but only initiation at the 5′-end remains stably paired in the absence of SsbA. Our results suggest that during gene transfer RecA·ATP, in concert with SsbA and DprA or RecO, shows a moderate preference for the 3′-end of the duplex. We show that RecA-mediated recombination initiated at the 3′- or 5′-complementary end might have significant implication on the ecological diversification of bacterial species with natural transformation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Humberto Sánchez
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| |
Collapse
|
38
|
Mismatch repair and homeologous recombination. DNA Repair (Amst) 2015; 38:75-83. [PMID: 26739221 DOI: 10.1016/j.dnarep.2015.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/26/2015] [Accepted: 11/30/2015] [Indexed: 12/27/2022]
Abstract
DNA mismatch repair influences the outcome of recombination events between diverging DNA sequences. Here we discuss how mismatch repair proteins are active in different homologous recombination subpathways and specific reaction steps, resulting in differential modulation of these recombination events, with a focus on the mechanism of heteroduplex rejection during the inhibition of recombination between slightly diverged (homeologous) DNA sequences.
Collapse
|
39
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
40
|
Prentiss M, Prévost C, Danilowicz C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit Rev Biochem Mol Biol 2015; 50:453-76. [DOI: 10.3109/10409238.2015.1092943] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Yang D, Boyer B, Prévost C, Danilowicz C, Prentiss M. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure. Nucleic Acids Res 2015; 43:10251-63. [PMID: 26384422 PMCID: PMC4666392 DOI: 10.1093/nar/gkv883] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022] Open
Abstract
RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results.
Collapse
Affiliation(s)
- Darren Yang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin Boyer
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Univ Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Univ Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
42
|
Danilowicz C, Yang D, Kelley C, Prévost C, Prentiss M. The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo. Nucleic Acids Res 2015; 43:6473-85. [PMID: 26089391 PMCID: PMC4513875 DOI: 10.1093/nar/gkv610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/31/2015] [Indexed: 11/15/2022] Open
Abstract
RecA family proteins are responsible for homology search and strand exchange. In bacteria, homology search begins after RecA binds an initiating single-stranded DNA (ssDNA) in the primary DNA-binding site, forming the presynaptic filament. Once the filament is formed, it interrogates double-stranded DNA (dsDNA). During the interrogation, bases in the dsDNA attempt to form Watson–Crick bonds with the corresponding bases in the initiating strand. Mismatch dependent instability in the base pairing in the heteroduplex strand exchange product could provide stringent recognition; however, we present experimental and theoretical results suggesting that the heteroduplex stability is insensitive to mismatches. We also present data suggesting that an initial homology test of 8 contiguous bases rejects most interactions containing more than 1/8 mismatches without forming a detectable 20 bp product. We propose that, in vivo, the sparsity of accidental sequence matches allows an initial 8 bp test to rapidly reject almost all non-homologous sequences. We speculate that once the initial test is passed, the mismatch insensitive binding in the heteroduplex allows short mismatched regions to be incorporated in otherwise homologous strand exchange products even though sequences with less homology are eventually rejected.
Collapse
Affiliation(s)
| | - Darren Yang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Craig Kelley
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Univ. Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
43
|
Kang HA, Shin HC, Kalantzi AS, Toseland CP, Kim HM, Gruber S, Peraro MD, Oh BH. Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Res 2015; 43:3841-56. [PMID: 25740648 PMCID: PMC4402518 DOI: 10.1093/nar/gkv172] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/20/2015] [Indexed: 11/14/2022] Open
Abstract
In meiotic DNA recombination, the Hop2-Mnd1 complex promotes Dmc1-mediated single-stranded DNA (ssDNA) invasion into homologous chromosomes to form a synaptic complex by a yet-unclear mechanism. Here, the crystal structure of Hop2-Mnd1 reveals that it forms a curved rod-like structure consisting of three leucine zippers and two kinked junctions. One end of the rod is linked to two juxtaposed winged-helix domains, and the other end is capped by extra α-helices to form a helical bundle-like structure. Deletion analysis shows that the helical bundle-like structure is sufficient for interacting with the Dmc1-ssDNA nucleofilament, and molecular modeling suggests that the curved rod could be accommodated into the helical groove of the nucleofilament. Remarkably, the winged-helix domains are juxtaposed at fixed relative orientation, and their binding to DNA is likely to perturb the base pairing according to molecular simulations. These findings allow us to propose a model explaining how Hop2-Mnd1 juxtaposes Dmc1-bound ssDNA with distorted recipient double-stranded DNA and thus facilitates strand invasion.
Collapse
Affiliation(s)
- Hyun-Ah Kang
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Alexandra-Styliani Kalantzi
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Christopher P Toseland
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am, Klopferspitz 18, 82152 Martinsried, Germany
| | - Hyun-Min Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am, Klopferspitz 18, 82152 Martinsried, Germany
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
44
|
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol 2014; 15:369-83. [PMID: 24824069 DOI: 10.1038/nrm3805] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.
Collapse
Affiliation(s)
- Jörg Renkawitz
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria. [3]
| | - Claudio A Lademann
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2]
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
45
|
Sharma R, Davies AG, Wälti C. Directed assembly of 3-nm-long RecA nucleoprotein filaments on double-stranded DNA with nanometer resolution. ACS NANO 2014; 8:3322-3330. [PMID: 24593185 PMCID: PMC4004295 DOI: 10.1021/nn405281s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Protein-mediated self-assembly is arguably one of the most promising routes for building complex molecular nanostructures. Here, we report a molecular self-assembly technique that allows programmable, site-specific patterning of double-stranded DNA scaffolds, at a single-base resolution, by 3-nm-long RecA-based nucleoprotein filaments. RecA proteins bind to single-stranded DNA to form nucleoprotein filaments. These can self-assemble onto a double-stranded DNA scaffold at a region homologous to the nucleoprotein's single-stranded DNA sequence. We demonstrate that nucleoprotein filaments can be formed from single-stranded DNA molecules ranging in length from 60 nucleotides down to just 6 nucleotides, and these can be assembled site-specifically onto a model DNA scaffold both at the end of the scaffold and away from the end. In both cases, successful site-specific self-assembly is demonstrated even for the smallest nucleoprotein filaments, which are just 3 nm long, comprise only two monomers of RecA, and cover less than one helical turn of the double-stranded DNA scaffold. Finally, we demonstrate that the RecA-mediated assembly process is highly site-specific and that the filaments indeed bind only to the homologous region of the DNA scaffold, leaving the neighboring scaffold exposed.
Collapse
|
46
|
Sanchez H, Reuter M, Yokokawa M, Takeyasu K, Wyman C. Taking it one step at a time in homologous recombination repair. DNA Repair (Amst) 2014; 20:110-118. [PMID: 24636751 DOI: 10.1016/j.dnarep.2014.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/10/2023]
Abstract
The individual steps in the process of homologous recombination are particularly amenable to analysis by single-molecule imaging and manipulation experiments. Over the past 20 years these have provided a wealth of new information on the DNA transactions that make up this vital process. Exciting progress in developing new tools and techniques to analyze more complex components, dynamic reaction steps and molecular coordination continues at a rapid pace. Here we highlight recent results and indicate some emerging techniques likely to produce the next stage of advanced insight into homologous recombination. In this and related fields the future is bright.
Collapse
Affiliation(s)
- Humberto Sanchez
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Reuter
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Masatoshi Yokokawa
- Graduate School of Pure and Applied Science, University of Tsukuba, Japan
| | | | - Claire Wyman
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Dutov P, Schieber J. Calibration of optical traps by dual trapping of one bead. OPTICS LETTERS 2013; 38:4923-6. [PMID: 24322167 DOI: 10.1364/ol.38.004923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We introduce a method for optical trap calibration that is suitable for viscoelastic material. The method is designed for use on experimental setups with two optical tweezers and is based on pulling a trapped particle with one trap while holding it with the other. No piezo stage is needed, and only one optical trap must be movable with galvo mirrors, piezo mirrors, or acousto-optical deflectors. The method combines advantages of commonly known PSD-fitting and fast-sweeping methods, allowing calibration of a completely fixed trap in a fluid of unknown viscosity/viscoelasticity. A detailed method description, a theoretical derivation, and an experimental comparison to other methods are reported.
Collapse
|
48
|
Tham KC, Hermans N, Winterwerp HHK, Cox MM, Wyman C, Kanaar R, Lebbink JHG. Mismatch repair inhibits homeologous recombination via coordinated directional unwinding of trapped DNA structures. Mol Cell 2013; 51:326-37. [PMID: 23932715 DOI: 10.1016/j.molcel.2013.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 11/25/2022]
Abstract
Homeologous recombination between divergent DNA sequences is inhibited by DNA mismatch repair. In Escherichia coli, MutS and MutL respond to DNA mismatches within recombination intermediates and prevent strand exchange via an unknown mechanism. Here, using purified proteins and DNA substrates, we find that in addition to mismatches within the heteroduplex region, secondary structures within the displaced single-stranded DNA formed during branch migration within the recombination intermediate are involved in the inhibition. We present a model that explains how higher-order complex formation of MutS, MutL, and DNA blocks branch migration by preventing rotation of the DNA strands within the recombination intermediate. Furthermore, we find that the helicase UvrD is recruited to directionally resolve these trapped intermediates toward DNA substrates. Thus, our results explain on a mechanistic level how the coordinated action between MutS, MutL, and UvrD prevents homeologous recombination and maintains genome stability.
Collapse
Affiliation(s)
- Khek-Chian Tham
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam 3000 CA, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
All organisms need homologous recombination (HR) to repair DNA double-strand breaks. Defects in recombination are linked to genetic instability and to elevated risks in developing cancers. The central catalyst of HR is a nucleoprotein filament, consisting of recombinase proteins (human RAD51 or bacterial RecA) bound around single-stranded DNA. Over the last two decades, single-molecule techniques have provided substantial new insights into the dynamics of homologous recombination. Here, we survey important recent developments in this field of research and provide an outlook on future developments.
Collapse
|
50
|
Kates-Harbeck J, Tilloy A, Prentiss M. Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012702. [PMID: 23944487 PMCID: PMC4974998 DOI: 10.1103/physreve.88.012702] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Indexed: 06/02/2023]
Abstract
Inspired by RecA-protein-based homology recognition, we consider the pairing of two long linear arrays of binding sites. We propose a fully reversible, physically realizable biased random walk model for rapid and accurate self-assembly due to the spontaneous pairing of matching binding sites, where the statistics of the searched sample are included. In the model, there are two bound conformations, and the free energy for each conformation is a weakly nonlinear function of the number of contiguous matched bound sites.
Collapse
Affiliation(s)
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|