1
|
Hu J, Crickard JB. All who wander are not lost: the search for homology during homologous recombination. Biochem Soc Trans 2024; 52:367-377. [PMID: 38323621 PMCID: PMC10903458 DOI: 10.1042/bst20230705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that functions to maintain genomic integrity. A vital component of the HR reaction is the identification of template DNA to be used during repair. This occurs through a mechanism known as the homology search. The homology search occurs in two steps: a collision step in which two pieces of DNA are forced to collide and a selection step that results in homologous pairing between matching DNA sequences. Selection of a homologous template is facilitated by recombinases of the RecA/Rad51 family of proteins in cooperation with helicases, translocases, and topoisomerases that determine the overall fidelity of the match. This menagerie of molecular machines acts to regulate critical intermediates during the homology search. These intermediates include recombinase filaments that probe for short stretches of homology and early strand invasion intermediates in the form of displacement loops (D-loops) that stabilize paired DNA. Here, we will discuss recent advances in understanding how these specific intermediates are regulated on the molecular level during the HR reaction. We will also discuss how the stability of these intermediates influences the ultimate outcomes of the HR reaction. Finally, we will discuss recent physiological models developed to explain how the homology search protects the genome.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| | - J. Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
2
|
Hu J, Ferlez B, Dau J, Crickard JB. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Nucleic Acids Res 2023; 51:11688-11705. [PMID: 37850655 PMCID: PMC10681728 DOI: 10.1093/nar/gkad848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Dau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Keymakh M, Dau J, Hu J, Ferlez B, Lisby M, Crickard JB. Rdh54 stabilizes Rad51 at displacement loop intermediates to regulate genetic exchange between chromosomes. PLoS Genet 2022; 18:e1010412. [PMID: 36099310 PMCID: PMC9506641 DOI: 10.1371/journal.pgen.1010412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is a double-strand break DNA repair pathway that preserves chromosome structure. To repair damaged DNA, HR uses an intact donor DNA sequence located elsewhere in the genome. After the double-strand break is repaired, DNA sequence information can be transferred between donor and recipient DNA molecules through different mechanisms, including DNA crossovers that form between homologous chromosomes. Regulation of DNA sequence transfer is an important step in effectively completing HR and maintaining genome integrity. For example, mitotic exchange of information between homologous chromosomes can result in loss-of-heterozygosity (LOH), and in higher eukaryotes, the development of cancer. The DNA motor protein Rdh54 is a highly conserved DNA translocase that functions during HR. Several existing phenotypes in rdh54Δ strains suggest that Rdh54 may regulate effective exchange of DNA during HR. In our current study, we used a combination of biochemical and genetic techniques to dissect the role of Rdh54 on the exchange of genetic information during DNA repair. Our data indicate that RDH54 regulates DNA strand exchange by stabilizing Rad51 at an early HR intermediate called the displacement loop (D-loop). Rdh54 acts in opposition to Rad51 removal by the DNA motor protein Rad54. Furthermore, we find that expression of a catalytically inactivate allele of Rdh54, rdh54K318R, favors non-crossover outcomes. From these results, we propose a model for how Rdh54 may kinetically regulate strand exchange during homologous recombination. Homologous recombination is an important pathway in repairing DNA double strand breaks. For the purposes of this study, HR can be divided into two stages. The first is a DNA repair stage in which the broken DNA molecule is fixed. In the second stage, information can move from one DNA molecule to another. Enzymes that use the power of ATP hydrolysis to move along dsDNA aid in regulating both stages of HR. In this work we focused on the understudied DNA motor protein Rdh54. We combined genetic and biochemical approaches to show that Rdh54 regulates HR by stabilizing the recombinase protein Rad51 at early HR intermediates.
Collapse
Affiliation(s)
- Margaret Keymakh
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Jennifer Dau
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Jingyi Hu
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Bryan Ferlez
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - J. Brooks Crickard
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Pham N, Yan Z, Yu Y, Faria Afreen M, Malkova A, Haber JE, Ira G. Mechanisms restraining break-induced replication at two-ended DNA double-strand breaks. EMBO J 2021; 40:e104847. [PMID: 33844333 DOI: 10.15252/embj.2020104847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.
Collapse
Affiliation(s)
- Nhung Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mosammat Faria Afreen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Deveryshetty J, Peterlini T, Ryzhikov M, Brahiti N, Dellaire G, Masson JY, Korolev S. Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells. eLife 2019; 8:e44063. [PMID: 31017574 PMCID: PMC6533086 DOI: 10.7554/elife.44063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Thibaut Peterlini
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Mikhail Ryzhikov
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Nadine Brahiti
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | | | - Jean-Yves Masson
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Sergey Korolev
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| |
Collapse
|
6
|
Korolev S. Advances in structural studies of recombination mediator proteins. Biophys Chem 2017; 225:27-37. [PMID: 27974172 DOI: 10.1016/j.bpc.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Recombination mediator proteins (RMPs) are critical for genome integrity in all organisms. They include phage UvsY, prokaryotic RecF, -O, -R (RecFOR) and eukaryotic Rad52, Breast Cancer susceptibility 2 (BRCA2) and Partner and localizer of BRCA2 (PALB2) proteins. BRCA2 and PALB2 are tumor suppressors implicated in cancer. RMPs regulate binding of RecA-like recombinases to sites of DNA damage to initiate the most efficient non-mutagenic repair of broken chromosome and other deleterious DNA lesions. Mechanistically, RMPs stimulate a single-stranded DNA (ssDNA) hand-off from ssDNA binding proteins (ssbs) such as gp32, SSB and RPA, to recombinases, activating DNA repair only at the time and site of the damage event. This review summarizes structural studies of RMPs and their implications for understanding mechanism and function. Comparative analysis of RMPs is complicated due to their convergent evolution. In contrast to the evolutionary conserved ssbs and recombinases, RMPs are extremely diverse in sequence and structure. Structural studies are particularly important in such cases to reveal common features of the entire family and specific features of regulatory mechanisms for each member. All RMPs are characterized by specific DNA-binding domains and include variable protein interaction motifs. The complexity of such RMPs corresponds to the ever-growing number of DNA metabolism events they participate in under normal and pathological conditions and requires additional comprehensive structure-functional studies.
Collapse
Affiliation(s)
- S Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
7
|
DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 2015; 78:469-86. [PMID: 25184562 DOI: 10.1128/mmbr.00059-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.
Collapse
|
8
|
Wendeler E, Zobell O, Chrost B, Reiss B. Recombination products suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:548-558. [PMID: 25557140 DOI: 10.1111/tpj.12749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non-homologous end-joining (NHEJ). RAD51-mediated strand-invasion and subsequent strand-exchange is central to the two-end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector-derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51-dependent suggesting the existence of a pathway mechanistically similar to two-end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one-sided integration of two independent donor fragments occurred simultaneously leading to a double-strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.
Collapse
Affiliation(s)
- Edelgard Wendeler
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | | | | | | |
Collapse
|
9
|
Vollmeister E, Schipper K, Feldbrügge M. Microtubule-dependent mRNA transport in the model microorganismUstilago maydis. RNA Biol 2014; 9:261-8. [DOI: 10.4161/rna.19432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
10
|
Ryzhikov M, Gupta R, Glickman M, Korolev S. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms. J Biol Chem 2014; 289:28846-55. [PMID: 25170075 DOI: 10.1074/jbc.m114.585117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks.
Collapse
Affiliation(s)
- Mikhail Ryzhikov
- From the Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Richa Gupta
- Division of Infectious Diseases and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Michael Glickman
- Division of Infectious Diseases and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Sergey Korolev
- From the Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104 and
| |
Collapse
|
11
|
Dual DNA-binding domains shape the interaction of Brh2 with DNA. DNA Repair (Amst) 2014; 22:104-11. [PMID: 25128760 DOI: 10.1016/j.dnarep.2014.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 11/24/2022]
Abstract
Brh2, the BRCA2 ortholog in the fungus Ustilago maydis, harbors two different DNA-binding domains, one located in the N-terminal region and the other located in the C-terminal region. Here we were interested in comparing the biochemical properties of Brh2 fragments, Brh2(NT) and Brh2(CT), respectively, harboring the two different DNA-binding regions to understand the mechanistic purpose of dual DNA-interaction domains. With oligonucleotide substrates to model different DNA conformations, it was found that the substrate specificity of Brh2(NT) and Brh2(CT) was almost indistinguishable although avidity was different depending on salt concentration. DNA annealing activity inherent in Brh2 was found to be attributable to Brh2(NT). Likewise, activity responsible for a second-end capture reaction modeling a later step in repair of DNA double-strand breaks was found attributable to Brh2(NT). Efficient annealing of DNA strands coated with RPA required full length Brh2 rather than Brh2(NT) suggesting Brh2(CT) contributes to the activity when RPA is present. Brh2(NT) and Brh2(CT) were both found capable of physically interacting with RPA. The results suggest that while the two DNA-binding regions of Brh2 appear functionally redundant in certain aspects of DNA repair, they differ in fundamental properties, and likely contribute in different ways to repair processes involving or arising from stalled DNA replication forks.
Collapse
|
12
|
Jensen RB. BRCA2: one small step for DNA repair, one giant protein purified. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:479-89. [PMID: 24348212 PMCID: PMC3848102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
DNA damage, malfunctions in DNA repair, and genomic instability are processes that intersect at the crossroads of carcinogenesis. Underscoring the importance of DNA repair in breast and ovarian tumorigenesis is the familial inherited cancer predisposition gene BRCA2. The role of BRCA2 in DNA double-strand break repair was first revealed based on its interaction with RAD51, a central player in homologous recombination. The RAD51 protein forms a nucleoprotein filament on single-stranded DNA, invades a DNA duplex, and initiates a search for homology. Once a homologous DNA sequence is found, the DNA is used as a template for the high-fidelity repair of the DNA break. Many of the biochemical features that allow BRCA2 to choreograph the activities of RAD51 have been elucidated and include: targeting RAD51 to single-stranded DNA while inhibiting binding to dsDNA, reducing the ATPase activity of RAD51, and facilitating the displacement of the single-strand DNA binding protein, Replication Protein A. These reinforcing activities of BRCA2 culminate in the correct positioning of RAD51 onto a processed DNA double-strand break and initiate its faithful repair by homologous recombination. In this review, I will address current biochemical data concerning the BRCA2 protein and highlight unanswered questions regarding BRCA2 function in homologous recombination and cancer.
Collapse
|
13
|
Genois MM, Mukherjee A, Ubeda JM, Buisson R, Paquet E, Roy G, Plourde M, Coulombe Y, Ouellette M, Masson JY. Interactions between BRCA2 and RAD51 for promoting homologous recombination in Leishmania infantum. Nucleic Acids Res 2012; 40:6570-84. [PMID: 22505581 PMCID: PMC3413117 DOI: 10.1093/nar/gks306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In most organisms, the primary function of homologous recombination (HR) is to allow genome protection by the faithful repair of DNA double-strand breaks. The vital step of HR is the search for sequence homology, mediated by the RAD51 recombinase, which is stimulated further by proteins mediators such as the tumor suppressor BRCA2. The biochemical interplay between RAD51 and BRCA2 is unknown in Leishmania or Trypanosoma. Here we show that the Leishmania infantum BRCA2 protein possesses several critical features important for the regulation of DNA recombination at the genetic and biochemical level. A BRCA2 null mutant, generated by gene disruption, displayed genomic instability and gene-targeting defects. Furthermore, cytological studies show that LiRAD51 can no longer localize to the nucleus in this mutant. The Leishmania RAD51 and BRCA2 interact together and the purified proteins bind single-strand DNA. Remarkably, LiBRCA2 is a recombination mediator that stimulates the invasion of a resected DNA double-strand break in an undamaged template by LiRAD51 to form a D-loop structure. Collectively, our data show that LiBRCA2 and LiRAD51 promote HR at the genetic and biochemical level in L. infantum, the causative agent of visceral leishmaniasis.
Collapse
Affiliation(s)
- Marie-Michelle Genois
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Québec, G1R 2J6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Amunugama R, Fishel R. Homologous Recombination in Eukaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:155-206. [DOI: 10.1016/b978-0-12-387665-2.00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 2011; 36:59-77. [PMID: 21729109 DOI: 10.1111/j.1574-6976.2011.00296.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The maize pathogen Ustilago maydis has to undergo various morphological transitions for the completion of its sexual life cycle. For example, haploid cells respond to pheromone by forming conjugation tubes that fuse at their tips. The resulting dikaryon grows filamentously, expanding rapidly at the apex and inserting retraction septa at the basal pole. In this review, we present progress on the underlying mechanisms regulating such defined developmental programmes. The key findings of the postgenomic era are as follows: (1) endosomes function not only during receptor recycling, but also as multifunctional transport platforms; (2) a new transcriptional master regulator for pathogenicity is part of an intricate transcriptional network; (3) determinants for uniparental mitochondrial inheritance are encoded at the a2 mating-type locus; (4) microtubule-dependent mRNA transport is important in determining the axis of polarity; and (5) a battery of fungal effectors encoded in gene clusters is crucial for plant infection. Importantly, most processes are tightly controlled at the transcriptional, post-transcriptional and post-translational levels, resulting in a complex regulatory network. This intricate system is crucial for the timing of the correct order of developmental phases. Thus, new insights from all layers of regulation have substantially advanced our understanding of fungal development.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding. EMBO J 2011; 30:3368-82. [PMID: 21804533 PMCID: PMC3160658 DOI: 10.1038/emboj.2011.238] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022] Open
Abstract
The DNA recombination mediator and annealing factor RAD52 is a target of c-ABL activated in response to DNA damage. Engineering of recombinant tyrosine-phosphomimetic RAD52 facilitated studying the consequences of this phosphorylation. RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52Y104pCMF retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52Y104pCMF specifically targets and wraps ssDNA. While RAD52Y104pCMF is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.
Collapse
|
17
|
Mazloum N, Stegman MA, Croteau DL, Van Houten B, Kwon NS, Ling Y, Dickinson C, Venugopal A, Towheed MA, Nathan C. Identification of a chemical that inhibits the mycobacterial UvrABC complex in nucleotide excision repair. Biochemistry 2011; 50:1329-35. [PMID: 21235228 PMCID: PMC3042777 DOI: 10.1021/bi101674c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen’s ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb’s Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.
Collapse
Affiliation(s)
- Nayef Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kojic M, Zhou Q, Fan J, Holloman WK. Mutational analysis of Brh2 reveals requirements for compensating mediator functions. Mol Microbiol 2011; 79:180-91. [PMID: 21166902 PMCID: PMC3056505 DOI: 10.1111/j.1365-2958.2010.07440.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Brh2, a member of the BRCA2 family of proteins, governs homologous recombination in the fungus Ustilago maydis through interaction with Rad51. Brh2 serves at an early step in homologous recombination to mediate Rad51 nucleoprotein filament formation and also has the capability to function at a later step in recombination through its inherent DNA annealing activity. Rec2, a Rad51 paralogue, and Rad52 are additional components of the homologous recombination system, but the absence of either is less critical than Brh2 for operational activity. Here we tested a variety of mutant forms of Brh2 for activity in recombinational repair as measured by DNA repair proficiency. We found that a mutant of Brh2 deleted of the non-canonical DNA-binding domain within the N-terminal region is dependent upon the presence of Rad52 for DNA repair activity. We also determined that a motif first identified in human BRCA2 as important in binding DMC1 also contributes to DNA repair proficiency and cooperates with the BRC element in Rad51 binding.
Collapse
Affiliation(s)
- Milorad Kojic
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Qingwen Zhou
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Jie Fan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - William K. Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
19
|
Inoue J, Nagae T, Mishima M, Ito Y, Shibata T, Mikawa T. A mechanism for single-stranded DNA-binding protein (SSB) displacement from single-stranded DNA upon SSB-RecO interaction. J Biol Chem 2010; 286:6720-32. [PMID: 21169364 DOI: 10.1074/jbc.m110.164210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Displacement of single-stranded DNA (ssDNA)-binding protein (SSB) from ssDNA is necessary for filament formation of RecA on ssDNA to initiate homologous recombination. The interaction between RecO and SSB is considered to be important for SSB displacement; however, the interaction has not been characterized at the atomic level. In this study, to clarify the mechanism underlying SSB displacement from ssDNA upon RecO binding, we examined the interaction between Thermus thermophilus RecO and cognate SSB by NMR analysis. We found that SSB interacts with the C-terminal positively charged region of RecO. Based on this result, we constructed some RecO mutants. The R127A mutant had considerably decreased binding affinity for SSB and could not anneal SSB-coated ssDNAs. Further, the mutant in the RecOR complex prevented the recovery of ssDNA-dependent ATPase activity of RecA from inhibition by SSB. These results indicated that the region surrounding Arg-127 is the binding site of SSB. We also performed NMR analysis using the C-terminal peptide of SSB and found that the acidic region of SSB is involved in the interaction with RecO, as seen in other protein-SSB interactions. Taken together with the findings of previous studies, we propose a model for SSB displacement from ssDNA where the acidic C-terminal region of SSB weakens the ssDNA binding affinity of SSB when the dynamics of the C-terminal region are suppressed by interactions with other proteins, including RecO.
Collapse
Affiliation(s)
- Jin Inoue
- RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 2010; 329:219-23. [PMID: 20538911 DOI: 10.1126/science.1192277] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A conserved DNA repair response is defective in the human genetic illness Fanconi anemia (FA). Mutation of some FA genes impairs homologous recombination and error-prone DNA repair, rendering FA cells sensitive to DNA cross-linking agents. We found a genetic interaction between the FA gene FANCC and the nonhomologous end joining (NHEJ) factor Ku70. Disruption of both FANCC and Ku70 suppresses sensitivity to cross-linking agents, diminishes chromosome breaks, and reverses defective homologous recombination. Ku70 binds directly to free DNA ends, committing them to NHEJ repair. We show that purified FANCD2, a downstream effector of the FA pathway, might antagonize Ku70 activity by modifying such DNA substrates. These results reveal a function for the FA pathway in processing DNA ends, thereby diverting double-strand break repair away from abortive NHEJ and toward homologous recombination.
Collapse
Affiliation(s)
- Paul Pace
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
21
|
Saito K, Kagawa W, Suzuki T, Suzuki H, Yokoyama S, Saitoh H, Tashiro S, Dohmae N, Kurumizaka H. The putative nuclear localization signal of the human RAD52 protein is a potential sumoylation site. J Biochem 2010; 147:833-42. [PMID: 20190268 DOI: 10.1093/jb/mvq020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RAD52, a key factor in homologous recombination (HR), plays important roles in both RAD51-dependent and -independent HR pathways. Several studies have suggested a link between the functional regulation of RAD52 and the protein modification by a small ubiquitin-like modifier (SUMO). However, the molecular mechanism underlying the regulation of RAD52 by SUMO is unknown. To begin investigating this mechanism, we identified possible target sites for sumoylation in the human RAD52 protein by preparing a RAD52-SUMO complex using an established Escherichia coli sumoylation system. Mass spectrometry and amino acid sequencing of the enzymatically digested fragments of the purified complex revealed that the putative nuclear localization signal located near the C terminus of RAD52 was sumoylated. Biochemical studies of the RAD52-SUMO complex suggested that sumoylation at the identified site has no apparent effect on the DNA binding, D-loop formation, ssDNA annealing and RAD51-binding activities of RAD52. On the other hand, visualization of the GFP-fused RAD52 protein in the human cell that contained mutations at the identified sumoylation sites showed clear differences in the cytosolic and nuclear distributions of the protein. These results suggest the possibility of sumoylation playing an important role in the nuclear transport of RAD52.
Collapse
Affiliation(s)
- Kengo Saito
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou Q, Mazloum N, Mao N, Kojic M, Holloman WK. Dss1 regulates interaction of Brh2 with DNA. Biochemistry 2010; 48:11929-38. [PMID: 19919104 DOI: 10.1021/bi901775j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Brh2, the BRCA2 homologue in Ustilago maydis, plays a crucial role in homologous recombination by controlling Rad51. In turn, Brh2 is governed by Dss1, an intrinsically disordered protein that forms a tight complex with the C-terminal region of Brh2. This region of the protein associating with Dss1 is highly conserved in sequence and by comparison with mammalian BRCA2 corresponds to a part of the DNA binding domain with characteristic OB folds. The N-terminal region of Brh2 harbors a less-defined but powerful DNA binding site, the activity of which is revealed upon deletion of the C-terminal region. Full-length Brh2 complexed with Dss1 binds DNA slowly, while the N-terminal fragment binds quickly. The DNA binding activity of full-length Brh2 appears to correlate with dissociation of Dss1. Addition of Dss1 to the heterotypic Brh2-Dss1 complex attenuates DNA binding activity, but not by direct competition for the N-terminal DNA binding site. Conversely, the Brh2-Dss1 complex dissociates more quickly when DNA is present. These findings suggest a model in which binding of Brh2 to DNA is subject to allosteric regulation by Dss1.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
23
|
Mazloum N, Holloman WK. Brh2 promotes a template-switching reaction enabling recombinational bypass of lesions during DNA synthesis. Mol Cell 2009; 36:620-30. [PMID: 19941822 DOI: 10.1016/j.molcel.2009.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/27/2009] [Accepted: 09/02/2009] [Indexed: 12/26/2022]
Abstract
Accumulating evidence for Rad51-catalyzed DNA strand invasion during double-strand break repair features a 3' single-stranded tail as the preferred substrate for reaction, but paradoxically, the preferred substrate in model reactions in vitro is the 5' end. Here, we examined the Rad51-promoted 5' end invasion reaction in the presence of Brh2, the BRCA2 family protein in Ustilago maydis. Using plasmid DNA and a homologous duplex oligonucleotide with 5' protruding single-stranded tail as substrates, we found that Brh2 can stimulate Rad51 to promote the formation of a four-stranded complement-stabilized D loop. In this structure, the incoming recessed complementary strand of the oligonucleotide has switched partners and can now prime DNA synthesis using the recipient plasmid DNA as template, circumventing a lesion that blocks elongation when the 5' protruding tail serves as template for fill-in synthesis. We propose that template switching promoted by Brh2 provides a mechanism for recombination-mediated bypass of lesions blocking synthesis during DNA replication.
Collapse
Affiliation(s)
- Nayef Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
24
|
Abstract
In this issue of Molecular Cell, Mazloum and Holloman (2009b) propose that 5' end strand invasion promoted by collaboration between Rad51 and Brh2 could be used for bypassing lesions during DNA replication, potentially advancing understanding of BRCA2 tumor suppressor function.
Collapse
Affiliation(s)
- Bertrand Llorente
- CNRS, Unité Propre de Recherche, Laboratory of Genome Instability and Carcinogenesis, conventionné par l'Université d'Aix-Marseille, France.
| | | |
Collapse
|
25
|
Nimonkar AV, Kowalczykowski SC. Second-end DNA capture in double-strand break repair: how to catch a DNA by its tail. Cell Cycle 2009; 8:1816-7. [PMID: 19471119 PMCID: PMC3051008 DOI: 10.4161/cc.8.12.8935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Amitabh V. Nimonkar
- Departments of Microbiology, and of Molecular and Cellular Biology; University of California; Davis, CA USA
| | - Stephen C. Kowalczykowski
- Departments of Microbiology, and of Molecular and Cellular Biology; University of California; Davis, CA USA
| |
Collapse
|