1
|
Lim KK, Lam UTF, Li Y, Zeng YB, Yang H, Chen ES. Set2 regulates Ccp1 and Swc2 to ensure centromeric stability by retargeting CENP-A. Nucleic Acids Res 2024; 52:4198-4214. [PMID: 38442274 PMCID: PMC11077061 DOI: 10.1093/nar/gkae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Precise positioning of the histone-H3 variant, CENP-A, ensures centromere stability and faithful chromosomal segregation. Mislocalization of CENP-A to extra-centromeric loci results in aneuploidy and compromised cell viability associated with formation of ectopic kinetochores. The mechanism that retargets mislocalized CENP-A back to the centromere is unclarified. We show here that the downregulation of the histone H3 lysine 36 (H3K36) methyltransferase Set2 can preserve centromere localization of a temperature-sensitive mutant cnp1-1 Schizosaccharomyces pombe CENP-A (SpCENP-A) protein and reverse aneuploidy by redirecting mislocalized SpCENP-A back to centromere from ribosomal DNA (rDNA) loci, which serves as a sink for the delocalized SpCENP-A. Downregulation of set2 augments Swc2 (SWR1 complex DNA-binding module) expression and releases histone chaperone Ccp1 from the centromeric reservoir. Swc2 and Ccp1 are directed to the rDNA locus to excavate the SpCENP-Acnp1-1, which is relocalized to the centromere in a manner dependent on canonical SpCENP-A loaders, including Mis16, Mis17 and Mis18, thereby conferring cell survival and safeguarding chromosome segregation fidelity. Chromosome missegregation is a severe genetic instability event that compromises cell viability. This mechanism thus promotes CENP-A presence at the centromere to maintain genomic stability.
Collapse
Affiliation(s)
- Kim Kiat Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Li
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Bing Zeng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Henry Yang
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
2
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
3
|
Cissé OH, Curran SJ, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Combs C, Thapar S, Dekker JP, Grewal S, Cushion M, Ma L, Kovacs JA. Regional centromere configuration in the fungal pathogens of the Pneumocystis genus. mBio 2024; 15:e0318523. [PMID: 38380929 PMCID: PMC10936427 DOI: 10.1128/mbio.03185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Centromeres are constricted chromosomal regions that are essential for cell division. In eukaryotes, centromeres display a remarkable architectural and genetic diversity. The basis of centromere-accelerated evolution remains elusive. Here, we focused on Pneumocystis species, a group of mammalian-specific fungal pathogens that form a sister taxon with that of the Schizosaccharomyces pombe, an important genetic model for centromere biology research. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of S. pombe. Using organisms from a short-term in vitro culture or infected animal models and chromatin immunoprecipitation (ChIP)-Seq, we identified CENP-A bound regions in two Pneumocystis species that diverged ~35 million years ago. Each species has a unique short regional centromere (<10 kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. These features suggest an epigenetic specification of centromere function. Analysis of centromeric DNA across multiple Pneumocystis species suggests a vertical transmission at least 100 million years ago. The common ancestry of Pneumocystis and S. pombe centromeres is untraceable at the DNA level, but the overall architectural similarity could be the result of functional constraint for successful chromosomal segregation.IMPORTANCEPneumocystis species offer a suitable genetic system to study centromere evolution in pathogens because of their phylogenetic proximity with the non-pathogenic yeast S. pombe, a popular model for cell biology. We used this system to explore how centromeres have evolved after the divergence of the two clades ~ 460 million years ago. To address this question, we established a protocol combining short-term culture and ChIP-Seq to characterize centromeres in multiple Pneumocystis species. We show that Pneumocystis have short epigenetic centromeres that function differently from those in S. pombe.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly J. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H. Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R. Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A. Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Christian Combs
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Thapar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P. Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Folco H, Xiao H, Wheeler D, Feng H, Bai Y, Grewal SS. The cysteine-rich domain in CENP-A chaperone Scm3HJURP ensures centromere targeting and kinetochore integrity. Nucleic Acids Res 2024; 52:1688-1701. [PMID: 38084929 PMCID: PMC10899784 DOI: 10.1093/nar/gkad1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 02/29/2024] Open
Abstract
Centromeric chromatin plays a crucial role in kinetochore assembly and chromosome segregation. Centromeres are specified through the loading of the histone H3 variant CENP-A by the conserved chaperone Scm3/HJURP. The N-terminus of Scm3/HJURP interacts with CENP-A, while the C-terminus facilitates centromere localization by interacting with the Mis18 holocomplex via a small domain, called the Mis16-binding domain (Mis16-BD) in fission yeast. Fungal Scm3 proteins contain an additional conserved cysteine-rich domain (CYS) of unknown function. Here, we find that CYS binds zinc in vitro and is essential for the localization and function of fission yeast Scm3. Disrupting CYS by deletion or introduction of point mutations within its zinc-binding motif prevents Scm3 centromere localization and compromises kinetochore integrity. Interestingly, CYS alone can localize to the centromere, albeit weakly, but its targeting is greatly enhanced when combined with Mis16-BD. Expressing a truncated protein containing both Mis16-BD and CYS, but lacking the CENP-A binding domain, causes toxicity and is accompanied by considerable chromosome missegregation and kinetochore loss. These effects can be mitigated by mutating the CYS zinc-binding motif. Collectively, our findings establish the essential role of the cysteine-rich domain in fungal Scm3 proteins and provide valuable insights into the mechanism of Scm3 centromere targeting.
Collapse
Affiliation(s)
- H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Ohkuni K, Au WC, Kazi A, Villamil M, Kaiser P, Basrai M. Interaction of histone H4 with Cse4 facilitates conformational changes in Cse4 for its sumoylation and mislocalization. Nucleic Acids Res 2024; 52:643-659. [PMID: 38038247 PMCID: PMC10810195 DOI: 10.1093/nar/gkad1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Mislocalization of overexpressed CENP-A (Cse4 in budding yeast, Cnp1 in fission yeast, CID in flies) contributes to chromosomal instability (CIN) in yeasts, flies, and human cells. Mislocalization of CENP-A is observed in many cancers and this correlates with poor prognosis. Structural mechanisms that contribute to mislocalization of CENP-A are poorly defined. Here, we show that interaction of histone H4 with Cse4 facilitates an in vivo conformational change in Cse4 promoting its mislocalization in budding yeast. We determined that Cse4 Y193A mutant exhibits reduced sumoylation, mislocalization, interaction with histone H4, and lethality in psh1Δ and cdc48-3 strains; all these phenotypes are suppressed by increased gene dosage of histone H4. We developed a new in vivo approach, antibody accessibility (AA) assay, to examine the conformation of Cse4. AA assay showed that wild-type Cse4 with histone H4 is in an 'open' state, while Cse4 Y193A predominantly exhibits a 'closed' state. Increased gene dosage of histone H4 contributes to a shift of Cse4 Y193A to an 'open' state with enhanced sumoylation and mislocalization. We provide molecular insights into how Cse4-H4 interaction changes the conformational state of Cse4 in vivo. These studies advance our understanding for mechanisms that promote mislocalization of CENP-A in human cancers.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amira Z Kazi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Villamil
- Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697-1700, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697-1700, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Fellmeth JE, Jang JK, Persaud M, Sturm H, Changela N, Parikh A, McKim KS. A dynamic population of prophase CENP-C is required for meiotic chromosome segregation. PLoS Genet 2023; 19:e1011066. [PMID: 38019881 PMCID: PMC10721191 DOI: 10.1371/journal.pgen.1011066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.
Collapse
Affiliation(s)
- Jessica E. Fellmeth
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K. Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Manisha Persaud
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Hannah Sturm
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Aashka Parikh
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
7
|
London N, Medina-Pritchard B, Spanos C, Rappsilber J, Jeyaprakash AA, Allshire RC. Direct recruitment of Mis18 to interphase spindle pole bodies promotes CENP-A chromatin assembly. Curr Biol 2023; 33:4187-4201.e6. [PMID: 37714149 DOI: 10.1016/j.cub.2023.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
CENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-ACnp1 is replenished and where Mis18C also localizes. We show that SPBs play an unexpected role in concentrating Mis18C near centromeres through the recruitment of Mis18 by direct binding to the major SPB linker of nucleoskeleton and cytoskeleton (LINC) component Sad1. Mis18C recruitment by Sad1 is important for CENP-ACnp1 chromatin establishment and acts in parallel with a CENP-C-mediated Mis18C recruitment pathway to maintain centromeric CENP-ACnp1 but operates independently of Sad1-mediated centromere clustering. SPBs therefore provide a non-chromosomal scaffold for both Mis18C recruitment and centromere clustering during G2. This centromere-independent Mis18-SPB recruitment provides a mechanism that governs de novo CENP-ACnp1 chromatin assembly by the proximity of appropriate sequences to SPBs and highlights how nuclear spatial organization influences centromere identity.
Collapse
Affiliation(s)
- Nitobe London
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Bethan Medina-Pritchard
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
8
|
Fellmeth JE, Jang J, Persaud M, Sturm H, Changela N, Parikh A, McKim KS. A Dynamic population of prophase CENP-C is required for meiotic chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532437. [PMID: 36993339 PMCID: PMC10054979 DOI: 10.1101/2023.03.13.532437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. It is not known, however, if these two functions require the same CENP-C molecules. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. Consistent with studies in mammals, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. In contrast to CID, maintaining high levels of CENP-C requires expression during prophase. Confirming the importance of this loading, we found CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.
Collapse
Affiliation(s)
- Jessica E Fellmeth
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Manisha Persaud
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Hannah Sturm
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Aashka Parikh
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
9
|
Cissé OH, Curran S, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Babb-Biernacki S, Doyle VP, Richards JK, Hassan SA, Dekker JP, Khil PP, Brenchley JM, Grewal S, Cushion M, Ma L, Kovacs JA. The Host Adapted Fungal Pathogens of Pneumocystis Genus Utilize Genic Regional Centromeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540427. [PMID: 37425787 PMCID: PMC10327204 DOI: 10.1101/2023.05.12.540427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, USA
| | - Spenser Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Sokolova V, Sarkar S, Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J 2022; 21:299-311. [PMID: 36582440 PMCID: PMC9764139 DOI: 10.1016/j.csbj.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Histone proteins are highly conserved among all eukaryotes. They have two important functions in the cell: to package the genomic DNA and to regulate gene accessibility. Fundamental to these functions is the ability of histone proteins to interact with DNA and to form the nucleoprotein complex called chromatin. One of the mechanisms the cells use to regulate chromatin and gene expression is through replacing canonical histones with their variants at specific loci to achieve functional consequence. Recent cryo-electron microscope (cryo-EM) studies of chromatin containing histone variants reveal new details that shed light on how variant-specific features influence the structures and functions of chromatin. In this article, we review the current state of knowledge on histone variants biochemistry and discuss the implication of these new structural information on histone variant biology and their functions in transcription.
Collapse
|
11
|
Dong Q, Li F. Cell cycle control of kinetochore assembly. Nucleus 2022; 13:208-220. [PMID: 36037227 PMCID: PMC9427032 DOI: 10.1080/19491034.2022.2115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
12
|
Tsunemine S, Nakagawa H, Suzuki Y, Murakami Y. The chromatin remodeler RSC prevents ectopic CENP-A propagation into pericentromeric heterochromatin at the chromatin boundary. Nucleic Acids Res 2022; 50:10914-10928. [PMID: 36200823 DOI: 10.1093/nar/gkac827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/05/2022] [Accepted: 10/01/2022] [Indexed: 01/22/2023] Open
Abstract
Centromeres of most eukaryotes consist of two distinct chromatin domains: a kinetochore domain, identified by the histone H3 variant, CENP-A, and a heterochromatic domain. How these two domains are separated is unclear. Here, we show that, in Schizosaccharomyces pombe, mutation of the chromatin remodeler RSC induced CENP-ACnp1 misloading at pericentromeric heterochromatin, resulting in the mis-assembly of kinetochore proteins and a defect in chromosome segregation. We find that RSC functions at the kinetochore boundary to prevent CENP-ACnp1 from spreading into neighbouring heterochromatin, where deacetylated histones provide an ideal environment for the spread of CENP-ACnp1. In addition, we show that RSC decompacts the chromatin structure at this boundary, and propose that this RSC-directed chromatin decompaction prevents mis-propagation of CENP-ACnp1 into pericentromeric heterochromatin. Our study provides an insight into how the distribution of distinct chromatin domains is established and maintained.
Collapse
Affiliation(s)
- Satoru Tsunemine
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Laboratory of Cell Regulation, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Nakagawa
- Laboratory of Cell Regulation, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
GRANT Motif Regulates CENP-A Incorporation and Restricts RNA Polymerase II Accessibility at Centromere. Genes (Basel) 2022; 13:genes13101697. [PMID: 36292582 PMCID: PMC9602348 DOI: 10.3390/genes13101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by a centromere-specific histone H3 variant, CENP-A. Many human cancers exhibit overexpression of CENP-A, which correlates with occurrence of aneuploidy in these malignancies. Centromeric targeting of CENP-A depends on its histone fold, but recent studies showed that the N-terminal tail domain (NTD) also plays essential roles. Here, we investigated implications of NTD in conferring aneuploidy formation when CENP-A is overexpressed in fission yeast. A series of mutant genes progressively lacking one amino acid of the NTD have been constructed for overexpression in wild-type cells using the intermediate strength nmt41 promoter. Constructs hosting disrupted GRANT (Genomic stability-Regulating site within CENP-A N-Terminus) motif in NTD results in growth retardation, aneuploidy, increased localization to the centromere, upregulated RNA polymerase II accessibility and transcriptional derepression of the repressive centromeric chromatin, suggesting that GRANT residues fine-tune centromeric CENP-A incorporation and restrict RNA polymerase II accessibility. This work highlighted the importance of CENP-A NTD, particularly the GRANT motif, in aneuploidy formation of overexpressed CENP-A in fission yeast.
Collapse
|
14
|
The Mis6 inner kinetochore subcomplex maintains CENP-A nucleosomes against centromeric non-coding transcription during mitosis. Commun Biol 2022; 5:818. [PMID: 35970865 PMCID: PMC9378642 DOI: 10.1038/s42003-022-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Centromeres are established by nucleosomes containing the histone H3 variant CENP-A. CENP-A is recruited to centromeres by the Mis18–HJURP machinery. During mitosis, CENP-A recruitment ceases, implying the necessity of CENP-A maintenance at centromeres, although the exact underlying mechanism remains elusive. Herein, we show that the inner kinetochore protein Mis6 (CENP-I) and Mis15 (CENP-N) retain CENP-A during mitosis in fission yeast. Eliminating Mis6 or Mis15 during mitosis caused immediate loss of pre-existing CENP-A at centromeres. CENP-A loss occurred due to the transcriptional upregulation of non-coding RNAs at the central core region of centromeres, as confirmed by the observation RNA polymerase II inhibition preventing CENP-A loss from centromeres in the mis6 mutant. Thus, we concluded that the inner kinetochore complex containing Mis6–Mis15 blocks the indiscriminate transcription of non-coding RNAs at the core centromere, thereby retaining the epigenetic inheritance of CENP-A during mitosis. The kinetochore protein Mis6 (CENP-I) plays an important role in CENP-A maintenance during mitosis in fission yeast and blocks the indiscriminate transcription of non-coding RNAs at the core centromere to retain CENP-A during mitosis.
Collapse
|
15
|
Wu W, McHugh T, Kelly DA, Pidoux AL, Allshire RC. Establishment of centromere identity is dependent on nuclear spatial organization. Curr Biol 2022; 32:3121-3136.e6. [PMID: 35830853 PMCID: PMC9616734 DOI: 10.1016/j.cub.2022.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
The establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-ACnp1 incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-ACnp1 overexpression bypasses heterochromatin dependency, suggesting that heterochromatin ensures exposure to conditions or locations permissive for CENP-ACnp1 assembly. Centromeres cluster around spindle-pole bodies (SPBs). We show that heterochromatin-bearing minichromosomes localize close to SPBs, consistent with this location promoting CENP-ACnp1 incorporation. We demonstrate that heterochromatin-independent de novo CENP-ACnp1 chromatin assembly occurs when central domain DNA is placed near, but not far from, endogenous centromeres or neocentromeres. Moreover, direct tethering of central domain DNA at SPBs permits CENP-ACnp1 assembly, suggesting that the nuclear compartment surrounding SPBs is permissive for CENP-ACnp1 incorporation because target sequences are exposed to high levels of CENP-ACnp1 and associated assembly factors. Thus, nuclear spatial organization is a key epigenetic factor that influences centromere identity.
Collapse
Affiliation(s)
- Weifang Wu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Toni McHugh
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - David A Kelly
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
16
|
Wang Y, Wu L, Yuen KWY. The roles of transcription, chromatin organisation and chromosomal processes in holocentromere establishment and maintenance. Semin Cell Dev Biol 2022; 127:79-89. [PMID: 35042676 DOI: 10.1016/j.semcdb.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
The centromere is a unique functional region on each eukaryotic chromosome where the kinetochore assembles and orchestrates microtubule attachment and chromosome segregation. Unlike monocentromeres that occupy a specific region on the chromosome, holocentromeres are diffused along the length of the chromosome. Despite being less common, holocentromeres have been verified in almost 800 nematode, insect, and plant species. Understanding of the molecular and epigenetic regulation of holocentromeres is lagging that of monocentromeres. Here we review how permissive locations for holocentromeres are determined across the genome, potentially by chromatin organisation, transcription, and non-coding RNAs, specifically in the nematode C. elegans. In addition, we discuss how holocentric CENP-A or CENP-T-containing nucleosomes are recruited and deposited, through the help of histone chaperones, licensing factors, and condensin complexes, both during de novo holocentromere establishment, and in each mitotic cell cycle. The process of resolving sister centromeres after DNA replication in holocentric organisms is also mentioned. Conservation and diversity between holocentric and monocentric organisms are highlighted, and outstanding questions are proposed.
Collapse
Affiliation(s)
- Yue Wang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Lillian Wu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong; Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
17
|
Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell 2022; 82:2113-2131.e8. [PMID: 35525244 PMCID: PMC9235857 DOI: 10.1016/j.molcel.2022.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Duccio Conti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
18
|
The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Semin Cell Dev Biol 2022; 135:24-34. [PMID: 35422390 DOI: 10.1016/j.semcdb.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Centromeres are highly specialised chromosome domains defined by the presence of an epigenetic mark, the specific histone H3 variant called CENP-A (centromere protein A). They constitute the genomic regions on which kinetochores form and when defective cause segregation defects that can lead to aneuploidy and cancer. Here, we discuss how CENP-A is established and maintained to propagate centromere identity while subjected to dynamic chromatin remodelling during essential cellular processes like DNA repair, replication, and transcription. We highlight parallels and identify conserved mechanisms between different model organism with a particular focus on 1) the establishment of CENP-A at centromeres, 2) CENP-A maintenance during transcription and replication, and 3) the mechanisms that help preventing CENP-A localization at non-centromeric sites. We then give examples of how timely loading of new CENP-A to the centromere, maintenance of old CENP-A during S-phase and transcription, and removal of CENP-A at non-centromeric sites are coordinated and controlled by an intricate network of factors whose identity is slowly being unravelled.
Collapse
|
19
|
Ohkuni K, Gliford L, Au WC, Suva E, Kaiser P, Basrai M. Cdc48Ufd1/Npl4 segregase removes mislocalized centromeric histone H3 variant CENP-A from non-centromeric chromatin. Nucleic Acids Res 2022; 50:3276-3291. [PMID: 35234920 PMCID: PMC8989521 DOI: 10.1093/nar/gkac135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2023] Open
Abstract
Restricting the localization of CENP-A (Cse4 in Saccharomyces cerevisiae) to centromeres prevents chromosomal instability (CIN). Mislocalization of overexpressed CENP-A to non-centromeric chromatin contributes to CIN in budding and fission yeasts, flies, and humans. Overexpression and mislocalization of CENP-A is observed in cancers and is associated with increased invasiveness. Mechanisms that remove mislocalized CENP-A and target it for degradation have not been defined. Here, we report that Cdc48 and its cofactors Ufd1 and Npl4 facilitate the removal of mislocalized Cse4 from non-centromeric chromatin. Defects in removal of mislocalized Cse4 contribute to lethality of overexpressed Cse4 in cdc48,ufd1 andnpl4 mutants. High levels of polyubiquitinated Cse4 and mislocalization of Cse4 are observed in cdc48-3, ufd1-2 and npl4-1mutants even under normal physiological conditions, thereby defining polyubiquitinated Cse4 as the substrate of the ubiquitin directed segregase Cdc48Ufd1/Npl4. Accordingly, Npl4, the ubiquitin binding receptor, associates with mislocalized Cse4, and this interaction is dependent on Psh1-mediated polyubiquitination of Cse4. In summary, we provide the first evidence for a mechanism that facilitates the removal of polyubiquitinated and mislocalized Cse4 from non-centromeric chromatin. Given the conservation of Cdc48Ufd1/Npl4 in humans, it is likely that defects in such pathways may contribute to CIN in human cancers.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Loran Gliford
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Ccp1-Ndc80 switch at the N terminus of CENP-T regulates kinetochore assembly. Proc Natl Acad Sci U S A 2021; 118:2104459118. [PMID: 34810257 PMCID: PMC8640933 DOI: 10.1073/pnas.2104459118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Precise chromosome segregation relies on kinetochores. How kinetochores are precisely assembled on centromeres through the cell cycle remains poorly understood. Centromeres in most eukaryotes are epigenetically marked by nucleosomes containing the histone H3 variant, CENP-A. Here, we demonstrated that Ccp1, an anti–CENP-A loading factor, interacts with the N terminus of CENP-T to promote the assembly of the outer kinetochore Ndc80 complex. This work further suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis. In addition, CENP-T is critical for Ccp1 centromeric localization, which in turn regulates CENP-A distribution. Our results reveal a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle. Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain–deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.
Collapse
|
21
|
Dong Q, Yang J, Gao J, Li F. Recent insights into mechanisms preventing ectopic centromere formation. Open Biol 2021; 11:210189. [PMID: 34493071 PMCID: PMC8424319 DOI: 10.1098/rsob.210189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The centromere is a specialized chromosomal structure essential for chromosome segregation. Centromere dysfunction leads to chromosome segregation errors and genome instability. In most eukaryotes, centromere identity is specified epigenetically by CENP-A, a centromere-specific histone H3 variant. CENP-A replaces histone H3 in centromeres, and nucleates the assembly of the kinetochore complex. Mislocalization of CENP-A to non-centromeric regions causes ectopic assembly of CENP-A chromatin, which has a devastating impact on chromosome segregation and has been linked to a variety of human cancers. How non-centromeric regions are protected from CENP-A misincorporation in normal cells is largely unexplored. Here, we review the most recent advances on the mechanisms underlying the prevention of ectopic centromere formation, and discuss the implications in human disease.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinpu Yang
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003-6688, USA
| |
Collapse
|
22
|
de Groot C, Houston J, Davis B, Gerson-Gurwitz A, Monen J, Lara-Gonzalez P, Oegema K, Shiau AK, Desai A. The N-terminal tail of C. elegans CENP-A interacts with KNL-2 and is essential for centromeric chromatin assembly. Mol Biol Cell 2021; 32:1193-1201. [PMID: 33852350 PMCID: PMC8351560 DOI: 10.1091/mbc.e20-12-0798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Centromeres are epigenetically defined by the centromere-specific histone H3 variant CENP-A. Specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, with CENP-A-dependent centromeres. Here, we show that the extended N-terminal tail of Caenorhabditis elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly; removal of this region prevents CENP-A loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-tail containing the predicted structured region binds to KNL-2, a conserved SANTA domain and Myb domain-containing protein (referred to as M18BP1 in vertebrates) specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode Caenorhabditis briggsae, despite divergence of the N-tail and KNL-2 primary sequences. Thus, the extended N-tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates a direct interaction between CENP-A and KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A–specific chaperone/targeting factor of the Scm3/HJURP family.
Collapse
Affiliation(s)
- Christian de Groot
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Jack Houston
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093
| | - Bethany Davis
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093.,Department of Biology and Chemistry, Embry-Riddle Aeronautical University, Prescott, AZ 86301
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Joost Monen
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,School of Theoretical & Applied Science, Ramapo College of New Jersey, Mahwah, NJ 07430
| | | | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
23
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Eisenstatt JR, Ohkuni K, Au WC, Preston O, Gliford L, Suva E, Costanzo M, Boone C, Basrai MA. Reduced gene dosage of histone H4 prevents CENP-A mislocalization and chromosomal instability in Saccharomyces cerevisiae. Genetics 2021; 218:6159615. [PMID: 33751052 DOI: 10.1093/genetics/iyab033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mislocalization of the centromeric histone H3 variant (Cse4 in budding yeast, CID in flies, CENP-A in humans) to noncentromeric regions contributes to chromosomal instability (CIN) in yeast, fly, and human cells. Overexpression and mislocalization of CENP-A have been observed in cancers, however, the mechanisms that facilitate the mislocalization of overexpressed CENP-A have not been fully explored. Defects in proteolysis of overexpressed Cse4 (GALCSE4) lead to its mislocalization and synthetic dosage lethality (SDL) in mutants for E3 ubiquitin ligases (Psh1, Slx5, SCFMet30, and SCFCdc4), Doa1, Hir2, and Cdc7. In contrast, defects in sumoylation of overexpressed cse4K215/216/A/R prevent its mislocalization and do not cause SDL in a psh1Δ strain. Here, we used a genome-wide screen to identify factors that facilitate the mislocalization of overexpressed Cse4 by characterizing suppressors of the psh1Δ GALCSE4 SDL. Deletions of histone H4 alleles (HHF1 or HHF2), which were among the most prominent suppressors, also suppress slx5Δ, cdc4-1, doa1Δ, hir2Δ, and cdc7-4 GALCSE4 SDL. Reduced dosage of H4 leads to defects in sumoylation and reduced mislocalization of overexpressed Cse4, which contributes to suppression of CIN when Cse4 is overexpressed. We determined that the hhf1-20, cse4-102, and cse4-111 mutants, which are defective in the Cse4-H4 interaction, also exhibit reduced sumoylation of Cse4 and do not display psh1Δ GALCSE4 SDL. In summary, we have identified genes that contribute to the mislocalization of overexpressed Cse4 and defined a role for the gene dosage of H4 in facilitating Cse4 sumoylation and mislocalization to noncentromeric regions, leading to CIN when Cse4 is overexpressed.
Collapse
Affiliation(s)
- Jessica R Eisenstatt
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Olivia Preston
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Loran Gliford
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael Costanzo
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
25
|
Meiotic CENP-C is a shepherd: bridging the space between the centromere and the kinetochore in time and space. Essays Biochem 2020; 64:251-261. [PMID: 32794572 DOI: 10.1042/ebc20190080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.
Collapse
|
26
|
Boopathi R, Danev R, Khoshouei M, Kale S, Nahata S, Ramos L, Angelov D, Dimitrov S, Hamiche A, Petosa C, Bednar J. Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends. Nucleic Acids Res 2020; 48:5735-5748. [PMID: 32313946 PMCID: PMC7261176 DOI: 10.1093/nar/gkaa246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
The histone H3 variant CENP-A marks centromeres epigenetically and is essential for mitotic fidelity. Previous crystallographic studies of the CENP-A nucleosome core particle (NCP) reconstituted with a human α-satellite DNA derivative revealed both DNA ends to be highly flexible, a feature important for CENP-A mitotic functions. However, recent cryo-EM studies of CENP-A NCP complexes comprising primarily Widom 601 DNA reported well-ordered DNA ends. Here, we report the cryo-EM structure of the CENP-A 601 NCP determined by Volta phase-plate imaging. The data reveal that one (‘left’) 601 DNA end is well ordered whereas the other (‘right’) end is flexible and partly detached from the histone core, suggesting sequence-dependent dynamics of the DNA termini. Indeed, a molecular dynamics simulation of the CENP-A 601 NCP confirmed the distinct dynamics of the two DNA extremities. Reprocessing the image data using two-fold symmetry yielded a cryo-EM map in which both DNA ends appeared well ordered, indicating that such an artefact may inadvertently arise if NCP asymmetry is lost during image processing. These findings enhance our understanding of the dynamic features that discriminate CENP-A from H3 nucleosomes by revealing that DNA end flexibility can be fine-tuned in a sequence-dependent manner.
Collapse
Affiliation(s)
- Ramachandran Boopathi
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Radostin Danev
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Maryam Khoshouei
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Seyit Kale
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD 20894, USA
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Sunil Nahata
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Lorrie Ramos
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), CNRS/ ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Correspondence may also be addressed to Stefan Dimitrov.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/ CNRS/INSERM, 67404 Illkirch Cedex, France
- Correspondence may also be addressed to Ali Hamiche.
| | - Carlo Petosa
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
- Correspondence may also be addressed to Carlo Petosa.
| | - Jan Bednar
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Teaching Hospital, 128 00 Prague, Czech Republic
- To whom correspondence should be addressed. Tel: +33 4 76 54 94 73;
| |
Collapse
|
27
|
Arunkumar G, Melters DP. Centromeric Transcription: A Conserved Swiss-Army Knife. Genes (Basel) 2020; 11:E911. [PMID: 32784923 PMCID: PMC7463856 DOI: 10.3390/genes11080911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
In most species, the centromere is comprised of repetitive DNA sequences, which rapidly evolve. Paradoxically, centromeres fulfill an essential function during mitosis, as they are the chromosomal sites wherein, through the kinetochore, the mitotic spindles bind. It is now generally accepted that centromeres are transcribed, and that such transcription is associated with a broad range of functions. More than a decade of work on this topic has shown that centromeric transcripts are found across the eukaryotic tree and associate with heterochromatin formation, chromatin structure, kinetochore structure, centromeric protein loading, and inner centromere signaling. In this review, we discuss the conservation of small and long non-coding centromeric RNAs, their associations with various centromeric functions, and their potential roles in disease.
Collapse
Affiliation(s)
| | - Daniël P. Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
28
|
Wong CYY, Lee BCH, Yuen KWY. Epigenetic regulation of centromere function. Cell Mol Life Sci 2020; 77:2899-2917. [PMID: 32008088 PMCID: PMC11105045 DOI: 10.1007/s00018-020-03460-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
The centromere is a specialized region on the chromosome that directs equal chromosome segregation. Centromeres are usually not defined by DNA sequences alone. How centromere formation and function are determined by epigenetics is still not fully understood. Active centromeres are often marked by the presence of centromeric-specific histone H3 variant, centromere protein A (CENP-A). How CENP-A is assembled into the centromeric chromatin during the cell cycle and propagated to the next cell cycle or the next generation to maintain the centromere function has been intensively investigated. In this review, we summarize current understanding of how post-translational modifications of CENP-A and other centromere proteins, centromeric and pericentric histone modifications, non-coding transcription and transcripts contribute to centromere function, and discuss their intricate relationships and potential feedback mechanisms.
Collapse
Affiliation(s)
- Charmaine Yan Yu Wong
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Bernard Chi Hang Lee
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
29
|
Mahlke MA, Nechemia-Arbely Y. Guarding the Genome: CENP-A-Chromatin in Health and Cancer. Genes (Basel) 2020; 11:genes11070810. [PMID: 32708729 PMCID: PMC7397030 DOI: 10.3390/genes11070810] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Faithful chromosome segregation is essential for the maintenance of genomic integrity and requires functional centromeres. Centromeres are epigenetically defined by the histone H3 variant, centromere protein A (CENP-A). Here we highlight current knowledge regarding CENP-A-containing chromatin structure, specification of centromere identity, regulation of CENP-A deposition and possible contribution to cancer formation and/or progression. CENP-A overexpression is common among many cancers and predicts poor prognosis. Overexpression of CENP-A increases rates of CENP-A deposition ectopically at sites of high histone turnover, occluding CCCTC-binding factor (CTCF) binding. Ectopic CENP-A deposition leads to mitotic defects, centromere dysfunction and chromosomal instability (CIN), a hallmark of cancer. CENP-A overexpression is often accompanied by overexpression of its chaperone Holliday Junction Recognition Protein (HJURP), leading to epigenetic addiction in which increased levels of HJURP and CENP-A become necessary to support rapidly dividing p53 deficient cancer cells. Alterations in CENP-A posttranslational modifications are also linked to chromosome segregation errors and CIN. Collectively, CENP-A is pivotal to genomic stability through centromere maintenance, perturbation of which can lead to tumorigenesis.
Collapse
Affiliation(s)
- Megan A. Mahlke
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yael Nechemia-Arbely
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-623-3228; Fax: +1-412-623-7828
| |
Collapse
|
30
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Wong CYY, Ling YH, Mak JKH, Zhu J, Yuen KWY. "Lessons from the extremes: Epigenetic and genetic regulation in point monocentromere and holocentromere establishment on artificial chromosomes". Exp Cell Res 2020; 390:111974. [PMID: 32222413 DOI: 10.1016/j.yexcr.2020.111974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
The formation of de novo centromeres on artificial chromosomes in humans (HACs) and fission yeast (SpYACs) has provided much insights to the epigenetic and genetic control on regional centromere establishment and maintenance. Similarly, the use of artificial chromosomes in point centromeric budding yeast Saccharomyces cerevisiae (ScYACs) and holocentric Caenorhabditis elegans (WACs) has revealed epigenetic regulation in the originally thought purely genetically-determined point centromeres and some centromeric DNA sequence features in holocentromeres, respectively. These relatively extreme and less characterized centromere organizations, on the endogenous chromosomes and artificial chromosomes, will be discussed and compared to the more well-studied regional centromere systems. This review will highlight some of the common epigenetic and genetic features in different centromere architectures, including the presence of the centromeric histone H3 variant, CENP-A or CenH3, centromeric and pericentric transcription, AT-richness and repetitiveness of centromeric DNA sequences.
Collapse
Affiliation(s)
- Charmaine Yan Yu Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jason Ka Ho Mak
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
32
|
Deposition of Centromeric Histone H3 Variant CENP-A/Cse4 into Chromatin Is Facilitated by Its C-Terminal Sumoylation. Genetics 2020; 214:839-854. [PMID: 32111629 DOI: 10.1534/genetics.120.303090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Centromeric localization of CENP-A (Cse4 in Saccharomyces cerevisiae, CID in flies, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of overexpressed CENP-A contributes to aneuploidy in yeast, flies, and humans, and is proposed to promote tumorigenesis in human cancers. Hence, defining molecular mechanisms that promote or prevent mislocalization of CENP-A is an area of active investigation. In budding yeast, evolutionarily conserved histone chaperones Scm3 and chromatin assembly factor-1 (CAF-1) promote localization of Cse4 to centromeric and noncentromeric regions, respectively. Ubiquitin ligases, such as Psh1 and Slx5, and histone chaperones (HIR complex) regulate proteolysis of overexpressed Cse4 and prevent its mislocalization to noncentromeric regions. In this study, we have identified sumoylation sites lysine (K) 215/216 in the C terminus of Cse4, and shown that sumoylation of Cse4 K215/216 facilitates its genome-wide deposition into chromatin when overexpressed. Our results showed reduced levels of sumoylation of mutant Cse4 K215/216R/A [K changed to arginine (R) or alanine (A)] and reduced interaction of mutant Cse4 K215/216R/A with Scm3 and CAF-1 when compared to wild-type Cse4 Consistent with these results, levels of Cse4 K215/216R/A in the chromatin fraction and localization to centromeric and noncentromeric regions were reduced. Furthermore, in contrast to GAL- CSE4, which exhibits Synthetic Dosage Lethality (SDL) in psh1∆, slx5∆, and hir2∆ strains, GAL- cse4 K215/216R does not exhibit SDL in these strains. Taken together, our results show that deposition of Cse4 into chromatin is facilitated by its C-terminal sumoylation.
Collapse
|
33
|
Korntner-Vetter M, Lefèvre S, Hu XW, George R, Singleton MR. Subunit interactions and arrangements in the fission yeast Mis16-Mis18-Mis19 complex. Life Sci Alliance 2019; 2:2/4/e201900408. [PMID: 31371524 PMCID: PMC6677171 DOI: 10.26508/lsa.201900408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022] Open
Abstract
Centromeric chromatin in fission yeast is distinguished by the presence of nucleosomes containing the histone H3 variant Cnp1CENP-A Cell cycle-specific deposition of Cnp1 requires the Mis16-Mis18-Mis19 complex, which is thought to direct recruitment of Scm3-chaperoned Cnp1/histone H4 dimers to DNA. Here, we present the structure of the essential Mis18 partner protein Mis19 and describe its interaction with Mis16, revealing a bipartite-binding site. We provide data on the stoichiometry and overall architecture of the complex and provide detailed insights into the Mis18-Mis19 interface.
Collapse
Affiliation(s)
- Melanie Korntner-Vetter
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Stéphane Lefèvre
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Xiao-Wen Hu
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Roger George
- Structural Biology Platform, The Francis Crick Institute, London, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
34
|
Tan HL, Lim KK, Yang Q, Fan JS, Sayed AMM, Low LS, Ren B, Lim TK, Lin Q, Mok YK, Liou YC, Chen ES. Prolyl isomerization of the CENP-A N-terminus regulates centromeric integrity in fission yeast. Nucleic Acids Res 2019; 46:1167-1179. [PMID: 29194511 DOI: 10.1093/nar/gkx1180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/22/2017] [Indexed: 01/15/2023] Open
Abstract
Centromeric identity and chromosome segregation are determined by the precise centromeric targeting of CENP-A, the centromere-specific histone H3 variant. The significance of the amino-terminal domain (NTD) of CENP-A in this process remains unclear. Here, we assessed the functional significance of each residue within the NTD of CENP-A from Schizosaccharomyces pombe (SpCENP-A) and identified a proline-rich 'GRANT' (Genomic stability-Regulating site within CENP-A N-Terminus) motif that is important for CENP-A function. Through sequential mutagenesis, we show that GRANT proline residues are essential for coordinating SpCENP-A centromeric targeting. GRANT proline-15 (P15), in particular, undergoes cis-trans isomerization to regulate chromosome segregation fidelity, which appears to be carried out by two FK506-binding protein (FKBP) family prolyl cis-trans isomerases. Using proteomics analysis, we further identified the SpCENP-A-localizing chaperone Sim3 as a SpCENP-A NTD interacting protein that is dependent on GRANT proline residues. Ectopic expression of sim3+ complemented the chromosome segregation defect arising from the loss of these proline residues. Overall, cis-trans proline isomerization is a post-translational modification of the SpCENP-A NTD that confers precise propagation of centromeric integrity in fission yeast, presumably via targeting SpCENP-A to the centromere.
Collapse
Affiliation(s)
- Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Kim Kiat Lim
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | | | - Liy Sim Low
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Bingbing Ren
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore
| |
Collapse
|
35
|
Piacentini L, Marchetti M, Bucciarelli E, Casale AM, Cappucci U, Bonifazi P, Renda F, Fanti L. A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres. Chromosoma 2019; 128:503-520. [PMID: 31203392 DOI: 10.1007/s00412-019-00711-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation. Despite the many components that are known to cooperate in centromere function, the complete network of factors involved in CENP-A recruitment remains to be defined. In Drosophila, the Trx-G proteins localize along the heterochromatin with specific patterns and some of them localize to the centromeres of all chromosomes. Here, we show that the Trx, Ash1, and CBP proteins are required for the correct chromosome segregation and that Ash1 and CBP mediate for Cid/CENP-A recruitment at centromeres through post-translational histone modifications. We found that centromeric H3 histone is consistently acetylated in K27 by CBP and that nej and ash1 silencing respectively causes a decrease in H3K27 acetylation and H3K4 methylation along with an impairment of Cid loading.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Marcella Marchetti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | | | - Assunta Maria Casale
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Ugo Cappucci
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Paolo Bonifazi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Fioranna Renda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.,Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Laura Fanti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.
| |
Collapse
|
36
|
Hamilton G, Dimitrova Y, Davis TN. Seeing is believing: our evolving view of kinetochore structure, composition, and assembly. Curr Opin Cell Biol 2019; 60:44-52. [PMID: 31078123 DOI: 10.1016/j.ceb.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022]
Abstract
This review highlights three recent trends in the field of kinetochore biology: the proliferation of structural data for kinetochore protein complexes (including CBF3, Dam1c, Mis12cMIND, and CENP-NLChl4/Iml3); the growing consensus that the kinetochore is a dynamic structure whose composition changes as the cell cycle progresses; and the mounting evidence of multiple pathways whereby the microtubule-binding elements of the outer kinetochore may be recruited by inner kinetochore proteins. Our focus is on the two best-studied systems in the field: human and budding yeast kinetochores. This review will demonstrate the remarkable similarity of these two systems, as well as their intriguing differences.
Collapse
Affiliation(s)
- Grace Hamilton
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA
| | - Yoana Dimitrova
- Genentech, Inc., 1 DNA Way, MS: 27, South San Francisco, CA 94080, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA.
| |
Collapse
|
37
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
38
|
Arimura Y, Tachiwana H, Takagi H, Hori T, Kimura H, Fukagawa T, Kurumizaka H. The CENP-A centromere targeting domain facilitates H4K20 monomethylation in the nucleosome by structural polymorphism. Nat Commun 2019; 10:576. [PMID: 30718488 PMCID: PMC6362020 DOI: 10.1038/s41467-019-08314-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
Centromeric nucleosomes are composed of the centromere-specific histone H3 variant CENP-A and the core histones H2A, H2B, and H4. To establish a functional kinetochore, histone H4 lysine-20 (H4K20) must be monomethylated, but the underlying mechanism has remained enigmatic. To provide structural insights into H4K20 methylation, we here solve the crystal structure of a nucleosome containing an H3.1-CENP-A chimera, H3.1CATD, which has a CENP-A centromere targeting domain and preserves essential CENP-A functions in vivo. Compared to the canonical H3.1 nucleosome, the H3.1CATD nucleosome exhibits conformational changes in the H4 N-terminal tail leading to a relocation of H4K20. In particular, the H4 N-terminal tail interacts with glutamine-76 and aspartate-77 of canonical H3.1 while these interactions are cancelled in the presence of the CENP-A-specific residues valine-76 and lysine-77. Mutations of valine-76 and lysine-77 impair H4K20 monomethylation both in vitro and in vivo. These findings suggest that a CENP-A-mediated structural polymorphism may explain the preferential H4K20 monomethylation in centromeric nucleosomes. Kinetochore function depends on H4K20 monomethylation in centromeric nucleosomes but the underlying mechanism is unclear. Here, the authors provide evidence that the centromere-specific nucleosome subunit CENP-A facilitates H4K20 methylation by enabling a conformational change of the H4 N-terminal tail.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroaki Tachiwana
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,The Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroki Takagi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
39
|
Shukla M, Tong P, White SA, Singh PP, Reid AM, Catania S, Pidoux AL, Allshire RC. Centromere DNA Destabilizes H3 Nucleosomes to Promote CENP-A Deposition during the Cell Cycle. Curr Biol 2018; 28:3924-3936.e4. [PMID: 30503616 PMCID: PMC6303189 DOI: 10.1016/j.cub.2018.10.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/12/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
Active centromeres are defined by the presence of nucleosomes containing CENP-A, a histone H3 variant, which alone is sufficient to direct kinetochore assembly. Once assembled at a location, CENP-A chromatin and kinetochores are maintained at that location through a positive feedback loop where kinetochore proteins recruited by CENP-A promote deposition of new CENP-A following replication. Although CENP-A chromatin itself is a heritable entity, it is normally associated with specific sequences. Intrinsic properties of centromeric DNA may favor the assembly of CENP-A rather than H3 nucleosomes. Here we investigate histone dynamics on centromere DNA. We show that during S phase, histone H3 is deposited as a placeholder at fission yeast centromeres and is subsequently evicted in G2, when we detect deposition of the majority of new CENP-ACnp1. We also find that centromere DNA has an innate property of driving high rates of turnover of H3-containing nucleosomes, resulting in low nucleosome occupancy. When placed at an ectopic chromosomal location in the absence of any CENP-ACnp1 assembly, centromere DNA appears to retain its ability to impose S phase deposition and G2 eviction of H3, suggesting that features within centromere DNA program H3 dynamics. Because RNA polymerase II (RNAPII) occupancy on this centromere DNA coincides with H3 eviction in G2, we propose a model in which RNAPII-coupled chromatin remodeling promotes replacement of H3 with CENP-ACnp1 nucleosomes.
Collapse
Affiliation(s)
- Manu Shukla
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Pin Tong
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sharon A White
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Puneet P Singh
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Angus M Reid
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sandra Catania
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alison L Pidoux
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
40
|
Zasadzińska E, Huang J, Bailey AO, Guo LY, Lee NS, Srivastava S, Wong KA, French BT, Black BE, Foltz DR. Inheritance of CENP-A Nucleosomes during DNA Replication Requires HJURP. Dev Cell 2018; 47:348-362.e7. [PMID: 30293838 PMCID: PMC6219920 DOI: 10.1016/j.devcel.2018.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/26/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Centromeric chromatin defines the site of kinetochore formation and ensures faithful chromosome segregation. Centromeric identity is epigenetically specified by the incorporation of CENP-A nucleosomes. DNA replication presents a challenge for inheritance of centromeric identity because nucleosomes are removed to allow for replication fork progression. Despite this challenge, CENP-A nucleosomes are stably retained through S phase. We used BioID to identify proteins transiently associated with CENP-A during DNA replication. We found that during S phase, HJURP transiently associates with centromeres and binds to pre-existing CENP-A, suggesting a distinct role for HJURP in CENP-A retention. We demonstrate that HJURP is required for centromeric nucleosome inheritance during S phase. HJURP co-purifies with the MCM2-7 helicase complex and, together with the MCM2 subunit, binds CENP-A simultaneously. Therefore, pre-existing CENP-A nucleosomes require an S phase function of the HJURP chaperone and interaction with MCM2 to ensure faithful inheritance of centromere identity through DNA replication.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jiehuan Huang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lucie Y Guo
- Department of Biochemistry and Biophysics and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy S Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Shashank Srivastava
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kelvin A Wong
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bradley T French
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
41
|
Lu M, He X. Ccp1 modulates epigenetic stability at centromeres and affects heterochromatin distribution in Schizosaccharomyces pombe. J Biol Chem 2018; 293:12068-12080. [PMID: 29899117 PMCID: PMC6078436 DOI: 10.1074/jbc.ra118.003873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/02/2018] [Indexed: 12/26/2022] Open
Abstract
Distinct chromatin organization features, such as centromeres and heterochromatin domains, are inherited epigenetically. However, the mechanisms that modulate the accuracy of epigenetic inheritance, especially at the individual nucleosome level, are not well-understood. Here, using ChIP and next-generation sequencing (ChIP-Seq), we characterized Ccp1, a homolog of the histone chaperone Vps75 in budding yeast that functions in centromere chromatin duplication and heterochromatin maintenance in fission yeast (Schizosaccharomyces pombe). We show that Ccp1 is enriched at the central core regions of the centromeres. Of note, among all histone chaperones characterized, deletion of the ccp1 gene uniquely reduced the rate of epigenetic switching, manifested as position effect variegation within the centromeric core region (CEN-PEV). In contrast, gene deletion of other histone chaperones either elevated the PEV switching rates or did not affect centromeric PEV. Ccp1 and the kinetochore components Mis6 and Sim4 were mutually dependent for centromere or kinetochore association at the proper levels. Moreover, Ccp1 influenced heterochromatin distribution at multiple loci in the genome, including the subtelomeric and the pericentromeric regions. We also found that Gar2, a protein predominantly enriched in the nucleolus, functions similarly to Ccp1 in modulating the epigenetic stability of centromeric regions, although its mechanism remained unclear. Together, our results identify Ccp1 as an important player in modulating epigenetic stability and maintaining proper organization of multiple chromatin domains throughout the fission yeast genome.
Collapse
Affiliation(s)
- Min Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
42
|
Fission Yeast CENP-C (Cnp3) Plays a Role in Restricting the Site of CENP-A Accumulation. G3-GENES GENOMES GENETICS 2018; 8:2723-2733. [PMID: 29925533 PMCID: PMC6071599 DOI: 10.1534/g3.118.200486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The centromere is a chromosomal locus where a microtubule attachment site, termed kinetochore, is assembled in mitosis. In most eukaryotes, with the exception of holocentric species, each chromosome contains a single distinct centromere. A chromosome with an additional centromere undergoes successive rounds of anaphase bridge formation and breakage, or triggers a cell cycle arrest imposed by DNA damage and replication checkpoints. We report here a study in Schizosaccharomyces pombe to characterize a mutant (cnp3-1) in a gene encoding a homolog of mammalian centromere-specific protein, CENP-C. At the restrictive temperature 36°, the Cnp3-1 mutant protein loses its localization at the centromere. In the cnp3-1 mutant, the level of the Cnp1 (a homolog of a centromere-specific histone CENP-A) also decreases at the centromere. Interestingly, the cnp3-1 mutant is prone to promiscuous accumulation of Cnp1 at non-centromeric regions, when Cnp1 is present in excess. Unlike the wild type protein, Cnp3-1 mutant protein is found at the sites of promiscuous accumulation of Cnp1, suggesting that Cnp3-1 may stabilize or promote accumulation of Cnp1 at non-centromeric regions. From these results, we infer the role of Cnp3 in restricting the site of accumulation of Cnp1 and thus to prevent formation of de novo centromeres.
Collapse
|
43
|
Mis16 Switches Function from a Histone H4 Chaperone to a CENP-A Cnp1-Specific Assembly Factor through Eic1 Interaction. Structure 2018; 26:960-971.e4. [PMID: 29804820 DOI: 10.1016/j.str.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/11/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022]
Abstract
The Mis18 complex, composed of Mis16, Eic1, and Mis18 in fission yeast, selectively deposits the centromere-specific histone H3 variant, CENP-ACnp1, at centromeres. How the intact Mis18 holo-complex oligomerizes and how Mis16, a well-known ubiquitous histone H4 chaperone, plays a centromere-specific role in the Mis18 holo-complex, remain unclear. Here, we report the stoichiometry of the intact Mis18 holo-complex as (Mis16)2:(Eic1)2:(Mis18)4 using analytical ultracentrifugation. We further determine the crystal structure of Schizosaccharomyces pombe Mis16 in complex with the C-terminal portion of Eic1 (Eic1-CT). Notably, Mis16 accommodates Eic1-CT through the binding pocket normally occupied by histone H4, indicating that Eic1 and H4 compete for the same binding site, providing a mechanism for Mis16 to switch its binding partner from histone H4 to Eic1. Thus, our analyses not only determine the stoichiometry of the intact Mis18 holo-complex but also uncover the molecular mechanism by which Mis16 plays a centromere-specific role through Eic1 association.
Collapse
|
44
|
Nucleosome-level 3D organization of the genome. Biochem Soc Trans 2018; 46:491-501. [PMID: 29626147 DOI: 10.1042/bst20170388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/19/2023]
Abstract
Nucleosomes are the unitary structures of chromosome folding, and their arrangements are intimately coupled to the regulation of genome activities. Conventionally, structural analyses using electron microscopy and X-ray crystallography have been used to study such spatial nucleosome arrangements. In contrast, recent improvements in the resolution of sequencing-based methods allowed investigation of nucleosome arrangements separately at each genomic locus, enabling exploration of gene-dependent regulation mechanisms. Here, we review recent studies on nucleosome folding in chromosomes from these two methodological perspectives: conventional structural analyses and DNA sequencing, and discuss their implications for future research.
Collapse
|
45
|
Pentakota S, Zhou K, Smith C, Maffini S, Petrovic A, Morgan GP, Weir JR, Vetter IR, Musacchio A, Luger K. Decoding the centromeric nucleosome through CENP-N. eLife 2017; 6:33442. [PMID: 29280735 PMCID: PMC5777823 DOI: 10.7554/elife.33442] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
Centromere protein (CENP) A, a histone H3 variant, is a key epigenetic determinant of chromosome domains known as centromeres. Centromeres nucleate kinetochores, multi-subunit complexes that capture spindle microtubules to promote chromosome segregation during mitosis. Two kinetochore proteins, CENP-C and CENP-N, recognize CENP-A in the context of a rare CENP-A nucleosome. Here, we reveal the structural basis for the exquisite selectivity of CENP-N for centromeres. CENP-N uses charge and space complementarity to decode the L1 loop that is unique to CENP-A. It also engages in extensive interactions with a 15-base pair segment of the distorted nucleosomal DNA double helix, in a position predicted to exclude chromatin remodelling enzymes. Besides CENP-A, stable centromere recruitment of CENP-N requires a coincident interaction with a newly identified binding motif on nucleosome-bound CENP-C. Collectively, our studies clarify how CENP-N and CENP-C decode and stabilize the non-canonical CENP-A nucleosome to enforce epigenetic centromere specification and kinetochore assembly.
Collapse
Affiliation(s)
- Satyakrishna Pentakota
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Keda Zhou
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, United States
| | - Charlotte Smith
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Garry P Morgan
- Department of MCDB, University of Colorado at Boulder, Boulder, United States
| | - John R Weir
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, United States.,Howard Hughes Medical Institute, Maryland, United States
| |
Collapse
|
46
|
Xenopus laevis M18BP1 Directly Binds Existing CENP-A Nucleosomes to Promote Centromeric Chromatin Assembly. Dev Cell 2017; 42:190-199.e10. [PMID: 28743005 DOI: 10.1016/j.devcel.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022]
Abstract
Vertebrate centromeres are epigenetically defined by nucleosomes containing the histone H3 variant, CENP-A. CENP-A nucleosome assembly requires the three-protein Mis18 complex (Mis18α, Mis18β, and M18BP1) that recruits the CENP-A chaperone HJURP to centromeres, but how the Mis18 complex recognizes centromeric chromatin is unknown. Using Xenopus egg extract, we show that direct, cell-cycle-regulated binding of M18BP1 to CENP-A nucleosomes recruits the Mis18 complex to interphase centromeres to promote new CENP-A nucleosome assembly. We demonstrate that Xenopus M18BP1 binds CENP-A nucleosomes using a motif that is widely conserved except in mammals. The M18BP1 motif resembles a CENP-A nucleosome binding motif in CENP-C, and we show that CENP-C competes with M18BP1 for CENP-A nucleosome binding at centromeres. We show that both CENP-C and M18BP1 recruit HJURP to centromeres for new CENP-A assembly. This study defines cellular mechanisms for recruiting CENP-A assembly factors to existing CENP-A nucleosomes for the epigenetic inheritance of centromeres.
Collapse
|
47
|
The Ino80 complex mediates epigenetic centromere propagation via active removal of histone H3. Nat Commun 2017; 8:529. [PMID: 28904333 PMCID: PMC5597579 DOI: 10.1038/s41467-017-00704-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
The centromere is the chromosomal locus at which the kinetochore is assembled to direct chromosome segregation. The histone H3 variant, centromere protein A (CENP-A), is known to epigenetically mark active centromeres, but the mechanism by which CENP-A propagates at the centromere, replacing histone H3, remains poorly understood. Using fission yeast, here we show that the Ino80 adenosine triphosphate (ATP)-dependent chromatin-remodeling complex, which removes histone H3-containing nucleosomes from associated chromatin, promotes CENP-ACnp1 chromatin assembly at the centromere in a redundant manner with another chromatin-remodeling factor Chd1Hrp1. CENP-ACnp1 chromatin actively recruits the Ino80 complex to centromeres to elicit eviction of histone H3-containing nucleosomes. Artificial targeting of Ino80 subunits to a non-centromeric DNA sequence placed in a native centromere enhances the spreading of CENP-ACnp1 chromatin into the non-centromeric DNA. Based on these results, we propose that CENP-ACnp1 chromatin employs the Ino80 complex to mediate the replacement of histone H3 with CENP-ACnp1, and thereby reinforces itself. The histone variant CENP-A marks active centromeres and replaces H3 at centromeres through a poorly understood mechanism. Here, the authors provide evidence that the chromatin remodeller Ino80 promotes CENP-A chromatin assembly at the centromere in fission yeast.
Collapse
|
48
|
Abstract
The genetic material, contained on chromosomes, is often described as the "blueprint for life." During nuclear division, the chromosomes are pulled into each of the two daughter nuclei by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units must link the chromosomes to the microtubules, signal to the cell when the attachment is made so that division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. To perform each of these functions, kinetochores are large protein complexes, approximately 5MDa in size, and they contain at least 45 unique proteins. Many of the central components in the kinetochore are well conserved, yielding a common core of proteins forming consistent structures. However, many of the peripheral subcomplexes vary between different taxonomic groups, including changes in primary sequence and gain or loss of whole proteins. It is still unclear how significant these changes are, and answers to this question may provide insights into adaptation to specific lifestyles or progression of disease that involve chromosome instability.
Collapse
|
49
|
Xie J, Wooten M, Tran V, Chen X. Breaking Symmetry - Asymmetric Histone Inheritance in Stem Cells. Trends Cell Biol 2017; 27:527-540. [PMID: 28268050 DOI: 10.1016/j.tcb.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Asymmetric cell division (ACD) gives rise to two daughter cells with distinct fates. ACD is widely used during development and by many types of adult stem cells during tissue homeostasis and regeneration. ACD can be regulated by extrinsic cues, such as signaling molecules, as well as by intrinsic factors, such as organelles and cortex proteins. The recent discovery of asymmetric histone inheritance during stem cell ACD has revealed another intrinsic mechanism by which ACD produces two distinct daughters. In this review we discuss these findings in the context of cell-cycle regulation, as well as other studies of ACD, to begin understanding the underlying mechanisms and biological relevance of this phenomenon.
Collapse
Affiliation(s)
- Jing Xie
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Current address: Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North Seattle, Seattle, WA 98109, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
50
|
Moreno-Moreno O, Torras-Llort M, Azorín F. Variations on a nucleosome theme: The structural basis of centromere function. Bioessays 2017; 39. [PMID: 28220502 DOI: 10.1002/bies.201600241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The centromere is a specialized chromosomal structure that dictates kinetochore assembly and, thus, is essential for accurate chromosome segregation. Centromere identity is determined epigenetically by the presence of a centromere-specific histone H3 variant, CENP-A, that replaces canonical H3 in centromeric chromatin. Here, we discuss recent work by Roulland et al. that identifies structural elements of the nucleosome as essential determinants of centromere function. In particular, CENP-A nucleosomes have flexible DNA ends due to the short αN helix of CENP-A. The higher flexibility of the DNA ends of centromeric nucleosomes impairs binding of linker histones H1, while it facilitates binding of other essential centromeric proteins, such as CENP-C, and is required for mitotic fidelity. This work extends previous observations indicating that the differential structural properties of CENP-A nucleosomes are on the basis of its contribution to centromere identity and function. Here, we discuss the implications of this work and the questions arising from it.
Collapse
Affiliation(s)
- Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| |
Collapse
|