1
|
Norppa AJ, Shcherbii MV, Frilander MJ. Connecting genotype and phenotype in minor spliceosome diseases. RNA (NEW YORK, N.Y.) 2025; 31:284-299. [PMID: 39761998 PMCID: PMC11874965 DOI: 10.1261/rna.080337.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components. However, recently published cryo-electron microscopy (cryo-EM) structures of various minor spliceosome assembly intermediates have marked a significant advancement in elucidating the roles of these components during splicing. These structural breakthroughs have not only enhanced our comprehension of the minor spliceosome's functionality but also shed light on how disease-associated mutations disrupt its functions. Consequently, research focus is now shifting toward investigating how these splicing defects translate into broader pathological processes within gene expression pathways. Here we outline the current structural and functional knowledge of the minor spliceosome, explore the mechanistic consequences of its mutations, and discuss emerging challenges in connecting molecular dysfunctions to clinical phenotypes.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, 000014 University of Helsinki, Finland
| | | | | |
Collapse
|
2
|
Bolikhova AK, Buyan AI, Mariasina SS, Rudenko AY, Chekh DS, Mazur AM, Prokhortchouk EB, Dontsova OA, Sergiev PV. Study of the RNA splicing kinetics via in vivo 5-EU labeling. RNA (NEW YORK, N.Y.) 2024; 30:1356-1373. [PMID: 39048310 PMCID: PMC11404452 DOI: 10.1261/rna.079937.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of SF3B4 knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.
Collapse
Affiliation(s)
- Anastasiia K Bolikhova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey I Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Y Rudenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daria S Chekh
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
3
|
Norppa AJ, Chowdhury I, van Rooijen LE, Ravantti JJ, Snel B, Varjosalo M, Frilander MJ. Distinct functions for the paralogous RBM41 and U11/U12-65K proteins in the minor spliceosome. Nucleic Acids Res 2024; 52:4037-4052. [PMID: 38499487 DOI: 10.1093/nar/gkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janne J Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Hu Y, Hao T, Yu H, Miao W, Zheng Y, Tao W, Zhuang J, Wang J, Fan Y, Jia S. lhCLIP reveals the in vivo RNA-RNA interactions recognized by hnRNPK. PLoS Genet 2023; 19:e1011006. [PMID: 37851698 PMCID: PMC10635571 DOI: 10.1371/journal.pgen.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
RNA-RNA interactions play a crucial role in regulating gene expression and various biological processes, but identifying these interactions on a transcriptomic scale remains a challenge. To address this, we have developed a new biochemical technique called pCp-biotin labelled RNA hybrid and ultraviolet crosslinking and immunoprecipitation (lhCLIP) that enables the transcriptome-wide identification of intra- and intermolecular RNA-RNA interactions mediated by a specific RNA-binding protein (RBP). Using lhCLIP, we have uncovered a diverse landscape of intermolecular RNA interactions recognized by hnRNPK in human cells, involving all major classes of noncoding RNAs (ncRNAs) and mRNA. Notably, hnRNPK selectively binds with snRNA U4, U11, and U12, and shapes the secondary structure of these snRNAs, which may impact RNA splicing. Our study demonstrates the potential of lhCLIP as a user-friendly and widely applicable method for discovering RNA-RNA interactions mediated by a particular protein of interest and provides a valuable tool for further investigating the role of RBPs in gene expression and biological processes.
Collapse
Affiliation(s)
- Yuanlang Hu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
- College of basic medical sciences, Three Gorges University, Yichang, People’s Republic of China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Hanwen Yu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Wenbin Miao
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yi Zheng
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Weihua Tao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Jingshen Zhuang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yujuan Fan
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Shiqi Jia
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Distinct Minor Splicing Patterns across Cancers. Genes (Basel) 2022; 13:genes13020387. [PMID: 35205431 PMCID: PMC8871696 DOI: 10.3390/genes13020387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
In human cells, the U12 spliceosome, also known as the minor spliceosome, is responsible for the splicing of 0.5% of introns, while the major U2 spliceosome is responsible for the other 99.5%. While many studies have been done to characterize and understand splicing dysregulation in cancer, almost all of them have focused on U2 splicing and ignored U12 splicing, despite evidence suggesting minor splicing is involved in cell cycle regulation. In this study, we analyzed RNA-seq data from The Cancer Genome Atlas for 14 different cohorts to determine differential splicing of minor introns in tumor and adjacent normal tissue. We found that in some cohorts, such as breast cancer, there was a strong skew towards minor introns showing increased splicing in the tumor; in others, such as the renal chromophobe cell carcinoma cohort, the opposite pattern was found, with minor introns being much more likely to have decreased splicing in the tumor. Further analysis of gene expression did not reveal any candidate regulatory mechanisms that could cause these different minor splicing phenotypes between cohorts. Our data suggest context-dependent roles of the minor spliceosome in tumorigenesis and provides a foundation for further investigation of minor splicing in cancer, which could then serve as a basis for novel therapeutic strategies.
Collapse
|
6
|
Akinyi MV, Frilander MJ. At the Intersection of Major and Minor Spliceosomes: Crosstalk Mechanisms and Their Impact on Gene Expression. Front Genet 2021; 12:700744. [PMID: 34354740 PMCID: PMC8329584 DOI: 10.3389/fgene.2021.700744] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Many eukaryotic species contain two separate molecular machineries for removing non-coding intron sequences from pre-mRNA molecules. The majority of introns (more than 99.5% in humans) are recognized and excised by the major spliceosome, which utilizes relatively poorly conserved sequence elements at the 5′ and 3′ ends of the intron that are used for intron recognition and in subsequent catalysis. In contrast, the minor spliceosome targets a rare group of introns (approximately 0.5% in humans) with highly conserved sequences at the 5′ and 3′ ends of the intron. Minor introns coexist in the same genes with major introns and while the two intron types are spliced by separate spliceosomes, the two splicing machineries can interact with one another to shape mRNA processing events in genes containing minor introns. Here, we review known cooperative and competitive interactions between the two spliceosomes and discuss the mechanistic basis of the spliceosome crosstalk, its regulatory significance, and impact on spliceosome diseases.
Collapse
Affiliation(s)
- Maureen V Akinyi
- Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
de Wolf B, Oghabian A, Akinyi MV, Hanks S, Tromer EC, van Hooff JJE, van Voorthuijsen L, van Rooijen LE, Verbeeren J, Uijttewaal ECH, Baltissen MPA, Yost S, Piloquet P, Vermeulen M, Snel B, Isidor B, Rahman N, Frilander MJ, Kops GJPL. Chromosomal instability by mutations in the novel minor spliceosome component CENATAC. EMBO J 2021; 40:e106536. [PMID: 34009673 PMCID: PMC8280824 DOI: 10.15252/embj.2020106536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.
Collapse
Affiliation(s)
- Bas de Wolf
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Ali Oghabian
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Present address:
Faculty of MedicineResearch Programs UnitUniversity of HelsinkiHelsinkiFinland
| | - Maureen V Akinyi
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sandra Hanks
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Eelco C Tromer
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jolien J E van Hooff
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Unité d'EcologieSystématique et EvolutionCNRSUniversité Paris‐SudUniversité Paris‐SaclayAgroParisTechOrsayFrance
| | - Lisa van Voorthuijsen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Jens Verbeeren
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Esther C H Uijttewaal
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Marijke P A Baltissen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Shawn Yost
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Philippe Piloquet
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Michiel Vermeulen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Bertrand Isidor
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Nazneen Rahman
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Mikko J Frilander
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Geert J P L Kops
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
8
|
Olthof AM, White AK, Mieruszynski S, Doggett K, Lee MF, Chakroun A, Abdel Aleem AK, Rousseau J, Magnani C, Roifman CM, Campeau PM, Heath JK, Kanadia RN. Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns. Nucleic Acids Res 2021; 49:3524-3545. [PMID: 33660780 PMCID: PMC8034651 DOI: 10.1093/nar/gkab118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vertebrate genomes contain major (>99.5%) and minor (<0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry–Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.
Collapse
Affiliation(s)
- Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | - Alisa K White
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | - Stephen Mieruszynski
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Karen Doggett
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Madisen F Lee
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | | | | | - Justine Rousseau
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, Parma, 43121, Italy
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON M5G 1X8, Canada.,The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, QC H4A 3J1, Canada
| | - Joan K Heath
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA.,Institute for System Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Gautvik KM, Günther CC, Prijatelj V, Medina-Gomez C, Shevroja E, Rad LH, Yazdani M, Lindalen E, Valland H, Gautvik VT, Olstad OK, Holden M, Rivadeneira F, Utheim TP, Reppe S. Distinct Subsets of Noncoding RNAs Are Strongly Associated With BMD and Fracture, Studied in Weight-Bearing and Non-Weight-Bearing Human Bone. J Bone Miner Res 2020; 35:1065-1076. [PMID: 32017184 DOI: 10.1002/jbmr.3974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
We investigated mechanisms resulting in low bone mineral density (BMD) and susceptibility to fracture by comparing noncoding RNAs (ncRNAs) in biopsies of non-weight-bearing (NWB) iliac (n = 84) and weight bearing (WB) femoral (n = 18) postmenopausal bone across BMDs varying from normal (T-score > -1.0) to osteoporotic (T-score ≤ -2.5). Global bone ncRNA concentrations were determined by PCR and microchip analyses. Association with BMD or fracture, adjusted by age and body mass index, were calculated using linear and logistic regression and least absolute shrinkage and selection operator (Lasso) analysis. At 10% false discovery rate (FDR), 75 iliac bone ncRNAs and 94 femoral bone ncRNAs were associated with total hip BMD. Eight of the ncRNAs were common for the two sites, but five of them (miR-484, miR-328-3p, miR-27a-5p, miR-28-3p, and miR-409-3p) correlated positively to BMD in femoral bone, but negatively in iliac bone. Of predicted pathways recognized in bone metabolism, ECM-receptor interaction and proteoglycans in cancer emerged at both sites, whereas fatty acid metabolism and focal adhesion were only identified in iliac bone. Lasso analysis and cross-validations identified sets of nine bone ncRNAs correlating strongly with adjusted total hip BMD in both femoral and iliac bone. Twenty-eight iliac ncRNAs were associated with risk of fracture (FDR < 0.1). The small nucleolar RNAs, RNU44 and RNU48, have a function in stabilization of ribosomal RNAs (rRNAs), and their association with fracture and BMD suggest that aberrant processing of rRNAs may be involved in development of osteoporosis. Cis-eQTL (expressed quantitative trait loci) analysis of the iliac bone biopsies identified two loci associated with microRNAs (miRNAs), one previously identified in a heel-BMD genomewide association study (GWAS). In this comprehensive investigation of the skeletal genetic background in postmenopausal women, we identified functional bone ncRNAs associated to fracture and BMD, representing distinct subsets in WB and NWB skeletal sites. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kaare M Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.,Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | | | - Vid Prijatelj
- Department of Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Enisa Shevroja
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leila Heidary Rad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Einar Lindalen
- Orthopaedic Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Haldor Valland
- Department of Surgery, Diakonhjemmet Hospital, Oslo, Norway
| | - Vigdis T Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ole K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital, Arendal, Norway
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.,Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Baumgartner M, Drake K, Kanadia RN. An Integrated Model of Minor Intron Emergence and Conservation. Front Genet 2019; 10:1113. [PMID: 31798628 PMCID: PMC6865273 DOI: 10.3389/fgene.2019.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Minor introns constitute <0.5% of the introns in the human genome and have remained an enigma since their discovery. These introns are removed by a distinct splicing complex, the minor spliceosome. Both are ancient, tracing back to the last eukaryotic common ancestor (LECA), which is reflected by minor intron enrichment in specific gene families, such as the mitogen activated-protein kinase kinases, voltage-gated sodium and calcium ion channels, and E2F transcription factors. Most minor introns occur as single introns in genes with predominantly major introns. Due to this organization, minor intron-containing gene (MIG) expression requires the coordinated action of two spliceosomes, which increases the probability of missplicing. Thus, one would expect loss of minor introns via purifying selection. This has resulted in complete minor intron loss in at least nine eukaryotic lineages. However, minor introns are highly conserved in land plants and metazoans, where their importance is underscored by embryonic lethality when the minor spliceosome is inactivated. Conditional inactivation of the minor spliceosome has shown that rapidly dividing progenitor cells are highly sensitive to minor spliceosome loss. Indeed, we found that MIGs were significantly enriched in a screen for genes essential for survival in 341 cycling cell lines. Here, we propose that minor introns inserted randomly into genes in LECA or earlier and were subsequently conserved in genes crucial for cycling cell survival. We hypothesize that the essentiality of MIGs allowed minor introns to endure through the unicellularity of early eukaryotic evolution. Moreover, we identified 59 MIGs that emerged after LECA, and that many of these are essential for cycling cell survival, reinforcing our essentiality model for MIG conservation. This suggests that minor intron emergence is dynamic across eukaryotic evolution, and that minor introns should not be viewed as molecular fossils. We also posit that minor intron splicing was co-opted in multicellular evolution as a regulatory switch for en masse control of MIG expression and the biological processes they regulate. Specifically, this mode of regulation could control cell proliferation and thus body size, an idea supported by domestication syndrome, wherein MIGs are enriched in common candidate animal domestication genes.
Collapse
Affiliation(s)
- Marybeth Baumgartner
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Brain and Cognitive Sciences, University of Connecticut, Mansfield, CT, United States
| | - Kyle Drake
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Systems Genomics, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
11
|
Doggett K, Williams BB, Markmiller S, Geng FS, Coates J, Mieruszynski S, Ernst M, Thomas T, Heath JK. Early developmental arrest and impaired gastrointestinal homeostasis in U12-dependent splicing-defective Rnpc3-deficient mice. RNA (NEW YORK, N.Y.) 2018; 24:1856-1870. [PMID: 30254136 PMCID: PMC6239176 DOI: 10.1261/rna.068221.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 05/10/2023]
Abstract
Splicing is an essential step in eukaryotic gene expression. While the majority of introns is excised by the U2-dependent, or major class, spliceosome, the appropriate expression of a very small subset of genes depends on U12-dependent, or minor class, splicing. The U11/U12 65K protein (hereafter 65K), encoded by RNPC3, is one of seven proteins that are unique to the U12-dependent spliceosome, and previous studies including our own have established that it plays a role in plant and vertebrate development. To pinpoint the impact of 65K loss during mammalian development and in adulthood, we generated germline and conditional Rnpc3-deficient mice. Homozygous Rnpc3-/- embryos died prior to blastocyst implantation, whereas Rnpc3+/- mice were born at the expected frequency, achieved sexual maturity, and exhibited a completely normal lifespan. Systemic recombination of conditional Rnpc3 alleles in adult (Rnpc3lox/lox ) mice caused rapid weight loss, leukopenia, and degeneration of the epithelial lining of the entire gastrointestinal tract, the latter due to increased cell death and a reduction in cell proliferation. Accompanying this, we observed a loss of both 65K and the pro-proliferative phospho-ERK1/2 proteins from the stem/progenitor cells at the base of intestinal crypts. RT-PCR analysis of RNA extracted from purified preparations of intestinal epithelial cells with recombined Rnpc3lox alleles revealed increased frequency of U12-type intron retention in all transcripts tested. Our study, using a novel conditional mouse model of Rnpc3 deficiency, establishes that U12-dependent splicing is not only important during development but is indispensable throughout life.
Collapse
Affiliation(s)
- Karen Doggett
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ben B Williams
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sebastian Markmiller
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Fan-Suo Geng
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Janine Coates
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Stephen Mieruszynski
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3050, Australia
| | - Tim Thomas
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joan K Heath
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
12
|
Norppa AJ, Kauppala TM, Heikkinen HA, Verma B, Iwaï H, Frilander MJ. Mutations in the U11/U12-65K protein associated with isolated growth hormone deficiency lead to structural destabilization and impaired binding of U12 snRNA. RNA (NEW YORK, N.Y.) 2018; 24:396-409. [PMID: 29255062 PMCID: PMC5824358 DOI: 10.1261/rna.062844.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/12/2017] [Indexed: 05/09/2023]
Abstract
Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Tuuli M Kauppala
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Harri A Heikkinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Hideo Iwaï
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
13
|
Jutzi D, Akinyi MV, Mechtersheimer J, Frilander MJ, Ruepp MD. The emerging role of minor intron splicing in neurological disorders. Cell Stress 2018; 2:40-54. [PMID: 31225466 PMCID: PMC6558932 DOI: 10.15698/cst2018.03.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pre-mRNA splicing is an essential step in eukaryotic gene expression. Mutations in cis-acting sequence elements within pre-mRNA molecules or trans-acting factors involved in pre-mRNA processing have both been linked to splicing dysfunction that give rise to a large number of human diseases. These mutations typically affect the major splicing pathway, which excises more than 99% of all introns in humans. However, approximately 700-800 human introns feature divergent intron consensus sequences at their 5' and 3' ends and are recognized by a separate pre-mRNA processing machinery denoted as the minor spliceosome. This spliceosome has been studied less than its major counterpart, but has received increasing attention during the last few years as a novel pathomechanistic player on the stage in neurodevelopmental and neurodegenerative diseases. Here, we review the current knowledge on minor spliceosome function and discuss its potential pathomechanistic role and impact in neurodegeneration.
Collapse
Affiliation(s)
- Daniel Jutzi
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Maureen V Akinyi
- Institute of Biotechnology, University of Helsinki, FI-00014, Finland
| | - Jonas Mechtersheimer
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, FI-00014, Finland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9NU London, UK
| |
Collapse
|
14
|
Identification of genome-wide non-canonical spliced regions and analysis of biological functions for spliced sequences using Read-Split-Fly. BMC Bioinformatics 2017; 18:382. [PMID: 28984182 PMCID: PMC5629565 DOI: 10.1186/s12859-017-1801-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background It is generally thought that most canonical or non-canonical splicing events involving U2- and U12 spliceosomes occur within nuclear pre-mRNAs. However, the question of whether at least some U12-type splicing occurs in the cytoplasm is still unclear. In recent years next-generation sequencing technologies have revolutionized the field. The “Read-Split-Walk” (RSW) and “Read-Split-Run” (RSR) methods were developed to identify genome-wide non-canonical spliced regions including special events occurring in cytoplasm. As the significant amount of genome/transcriptome data such as, Encyclopedia of DNA Elements (ENCODE) project, have been generated, we have advanced a newer more memory-efficient version of the algorithm, “Read-Split-Fly” (RSF), which can detect non-canonical spliced regions with higher sensitivity and improved speed. The RSF algorithm also outputs the spliced sequences for further downstream biological function analysis. Results We used open access ENCODE project RNA-Seq data to search spliced intron sequences against the U12-type spliced intron sequence database to examine whether some events could occur as potential signatures of U12-type splicing. The check was performed by searching spliced sequences against 5’ss and 3’ss sequences from the well-known orthologous U12-type spliceosomal intron database U12DB. Preliminary results of searching 70 ENCODE samples indicated that the presence of 5’ss with U12-type signature is more frequent than U2-type and prevalent in non-canonical junctions reported by RSF. The selected spliced sequences have also been further studied using miRBase to elucidate their functionality. Preliminary results from 70 samples of ENCODE datasets show that several miRNAs are prevalent in studied ENCODE samples. Two of these are associated with many diseases as suggested in the literature. Specifically, hsa-miR-1273 and hsa-miR-548 are associated with many diseases and cancers. Conclusions Our RSF pipeline is able to detect many possible junctions (especially those with a high RPKM) with very high overall accuracy and relative high accuracy for novel junctions. We have incorporated useful parameter features into the pipeline such as, handling variable-length read data, and searching spliced sequences for splicing signatures and miRNA events. We suggest RSF, a tool for identifying novel splicing events, is applicable to study a range of diseases across biological systems under different experimental conditions. Electronic supplementary material The online version of this article (10.1186/s12859-017-1801-y) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Chatzileontiadou DSM, Samiotaki M, Alexopoulou AN, Cotsiki M, Panayotou G, Stamatiadi M, Balatsos NAA, Leonidas DD, Kontou M. Proteomic Analysis of Human Angiogenin Interactions Reveals Cytoplasmic PCNA as a Putative Binding Partner. J Proteome Res 2017; 16:3606-3622. [PMID: 28777577 DOI: 10.1021/acs.jproteome.7b00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human Angiogenin (hAng) is a member of the ribonuclease A superfamily and a potent inducer of neovascularization. Protein interactions of hAng in the nucleus and cytoplasm of the human umbilical vein cell line EA.hy926 have been investigated by mass spectroscopy. Data are available via ProteomeXchange with identifiers PXD006583 and PXD006584. The first gel-free analysis of hAng immunoprecipitates revealed many statistically significant potential hAng-interacting proteins involved in crucial biological pathways. Surprisingly, proliferating cell nuclear antigen (PCNA), was found to be immunoprecipitated with hAng only in the cytoplasm. The hAng-PCNA interaction and colocalization in the specific cellular compartment was validated with immunoprecipitation, immunoblotting, and immunocytochemistry. The results revealed that PCNA is predominantly localized in the cytoplasm, while hAng is distributed both in the nucleus and in the cytoplasm. hAng and PCNA colocalize in the cytoplasm, suggesting that they may interact in this compartment.
Collapse
Affiliation(s)
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming" , Vari 16672, Greece
| | | | - Marina Cotsiki
- Biomedical Sciences Research Center "Alexander Fleming" , Vari 16672, Greece
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming" , Vari 16672, Greece
| | - Melina Stamatiadi
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| | - Maria Kontou
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| |
Collapse
|
16
|
Verbeeren J, Verma B, Niemelä EH, Yap K, Makeyev EV, Frilander MJ. Alternative exon definition events control the choice between nuclear retention and cytoplasmic export of U11/U12-65K mRNA. PLoS Genet 2017; 13:e1006824. [PMID: 28549066 PMCID: PMC5473595 DOI: 10.1371/journal.pgen.1006824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cellular homeostasis of the minor spliceosome is regulated by a negative feed-back loop that targets U11-48K and U11/U12-65K mRNAs encoding essential components of the U12-type intron-specific U11/U12 di-snRNP. This involves interaction of the U11 snRNP with an evolutionarily conserved splicing enhancer giving rise to unproductive mRNA isoforms. In the case of U11/U12-65K, this mechanism controls the length of the 3′ untranslated region (3′UTR). We show that this process is dynamically regulated in developing neurons and some other cell types, and involves a binary switch between translation-competent mRNAs with a short 3′UTR to non-productive isoforms with a long 3′UTR that are retained in the nucleus or/and spliced to the downstream amylase locus. Importantly, the choice between these alternatives is determined by alternative terminal exon definition events regulated by conserved U12- and U2-type 5′ splice sites as well as sequence signals used for pre-mRNA cleavage and polyadenylation. We additionally show that U11 snRNP binding to the U11/U12-65K mRNA species with a long 3′UTR is required for their nuclear retention. Together, our studies uncover an intricate molecular circuitry regulating the abundance of a key spliceosomal protein and shed new light on the mechanisms limiting the export of non-productively spliced mRNAs from the nucleus to the cytoplasm. The cellular homeostasis of many components of the eukaryotic RNA processing machinery is regulated via negative feed-back pathways that result in the formation of both productive and non-productive mRNA species. Typically, the formation of non-productive mRNAs species results from changes in alternative splicing that disrupt the reading frame of the protein coding region and leads to destabilization of the mRNA. Here, we have investigated the homeostasis regulation of the U11/U12-65K mRNA that encodes an essential protein component of the minor (U12-dependent) spliceosome intron recognition complex. We show that homeostasis is regulated at the level of nuclear mRNA export and mRNA 3′-end formation, and that it can be further regulated during neuronal differentiation. We describe a multilayered regulatory system utilizing alternative exon definition interactions that use the input from both spliceosomes and the polyadenylation machinery to decide between productive and non-productive mRNA formation. Because the 65K protein is an essential component of the minor spliceosome, this regulatory pathway can potentially affect the expression of ~700 genes containing U12-type introns.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Bhupendra Verma
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Elina H. Niemelä
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Karen Yap
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Eugene V. Makeyev
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Mikko J. Frilander
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
17
|
Jiang P, Li Z, Tian F, Li X, Yang J. Fyn/heterogeneous nuclear ribonucleoprotein E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. Int J Oncol 2017; 51:169-183. [PMID: 28560430 PMCID: PMC5467783 DOI: 10.3892/ijo.2017.4018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is characterized by a dense desmoplastic reaction in which extracellular matrix proteins accumulate and surround tumor cells. Integrins and their related signaling molecules are associated with progression of pancreatic cancer. In the present study, the association between the metastasis of pancreatic cancer and the expression of hnRNP E1 and integrin β1 was evaluated. In vitro and in vivo experiments were designed to study the mechanism underlying the regulation of integrin β1 splicing by the Fyn/hnRNP E1 spliceosome. Expression of hnRNP E1 and integrin β1A were associated with metastasis of pancreatic cancer. Inhibition of Fyn activity upregulated the expression of P21-activated kinase 1 and promoted the phosphorylation and nuclear localization of hnRNP E1, leading to the construction of a spliceosome complex that affected the alterative splicing of integrin β1. In the hnRNP E1 spliceosome complex, hnRNP A1 and serine/arginine-rich splicing factor 1 were responsible for binding to the pre-mRNA of integrin β1. Suppression of Fyn activity and/or overexpression of hnRNP E1 decreased the metastasis of pancreatic cancer cells. In pancreatic cancer, the present study demonstrated a novel mechanism by which Fyn/hnRNP E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. hnRNP E1 and integrin β1A are associated with the metastasis of pancreatic cancer and may be novel molecular targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaowu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
18
|
Niemelä EH, Verbeeren J, Singha P, Nurmi V, Frilander MJ. Evolutionarily conserved exon definition interactions with U11 snRNP mediate alternative splicing regulation on U11-48K and U11/U12-65K genes. RNA Biol 2016; 12:1256-64. [PMID: 26479860 DOI: 10.1080/15476286.2015.1096489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Many splicing regulators bind to their own pre-mRNAs to induce alternative splicing that leads to formation of unstable mRNA isoforms. This provides an autoregulatory feedback mechanism that regulates the cellular homeostasis of these factors. We have described such an autoregulatory mechanism for two core protein components, U11-48K and U11/U12-65K, of the U12-dependent spliceosome. This regulatory system uses an atypical splicing enhancer element termed USSE (U11 snRNP-binding splicing enhancer), which contains two U12-type consensus 5' splice sites (5'ss). Evolutionary analysis of the USSE element from a large number of animal and plant species indicate that USSE sequence must be located 25-50 nt downstream from the target 3' splice site (3'ss). Together with functional evidence showing a loss of USSE activity when this distance is reduced and a requirement for RS-domain of U11-35K protein for 3'ss activation, our data suggests that U11 snRNP bound to USSE uses exon definition interactions for regulating alternative splicing. However, unlike standard exon definition where the 5'ss bound by U1 or U11 will be subsequently activated for splicing, the USSE element functions similarly as an exonic splicing enhancer and is involved only in upstream splice site activation but does not function as a splicing donor. Additionally, our evolutionary and functional data suggests that the function of the 5'ss duplication within the USSE elements is to allow binding of two U11/U12 di-snRNPs that stabilize each others' binding through putative mutual interactions.
Collapse
Affiliation(s)
- Elina H Niemelä
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Jens Verbeeren
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Prosanta Singha
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Visa Nurmi
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Mikko J Frilander
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| |
Collapse
|
19
|
Niemelä EH, Frilander MJ. Regulation of gene expression through inefficient splicing of U12-type introns. RNA Biol 2015; 11:1325-9. [PMID: 25692230 PMCID: PMC4615840 DOI: 10.1080/15476286.2014.996454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
U12-type introns are a rare class of nuclear introns that are removed by a dedicated U12-dependent spliceosome and are thought to regulate the expression of their target genes owing through their slower splicing reaction. Recent genome-wide studies on the splicing of U12-type introns are now providing new insights on the biological significance of this parallel splicing machinery. The new studies cover multiple different organisms and experimental systems, including human patient cells with mutations in the components of the minor spliceosome, zebrafish with similar mutations and various experimentally manipulated human cells and Arabidopsis plants. Here, we will discuss the potential implications of these studies on the understanding of the mechanism and regulation of the minor spliceosome, as well as their medical implications.
Collapse
Affiliation(s)
- Elina H Niemelä
- a Institute of Biotechnology; Genome Biology Research Program ; University of Helsinki ; Helsinki , Finland
| | | |
Collapse
|
20
|
Fischer D, Wahlfors T, Mattila H, Oja H, Tammela TLJ, Schleutker J. MiRNA Profiles in Lymphoblastoid Cell Lines of Finnish Prostate Cancer Families. PLoS One 2015; 10:e0127427. [PMID: 26020509 PMCID: PMC4447459 DOI: 10.1371/journal.pone.0127427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Heritable factors are evidently involved in prostate cancer (PrCa) carcinogenesis, but currently, genetic markers are not routinely used in screening or diagnostics of the disease. More precise information is needed for making treatment decisions to distinguish aggressive cases from indolent disease, for which heritable factors could be a useful tool. The genetic makeup of PrCa has only recently begun to be unravelled through large-scale genome-wide association studies (GWAS). The thus far identified Single Nucleotide Polymorphisms (SNPs) explain, however, only a fraction of familial clustering. Moreover, the known risk SNPs are not associated with the clinical outcome of the disease, such as aggressive or metastasised disease, and therefore cannot be used to predict the prognosis. Annotating the SNPs with deep clinical data together with miRNA expression profiles can improve the understanding of the underlying mechanisms of different phenotypes of prostate cancer. Results In this study microRNA (miRNA) profiles were studied as potential biomarkers to predict the disease outcome. The study subjects were from Finnish high risk prostate cancer families. To identify potential biomarkers we combined a novel non-parametrical test with an importance measure provided from a Random Forest classifier. This combination delivered a set of nine miRNAs that was able to separate cases from controls. The detected miRNA expression profiles could predict the development of the disease years before the actual PrCa diagnosis or detect the existence of other cancers in the studied individuals. Furthermore, using an expression Quantitative Trait Loci (eQTL) analysis, regulatory SNPs for miRNA miR-483-3p that were also directly associated with PrCa were found. Conclusion Based on our findings, we suggest that blood-based miRNA expression profiling can be used in the diagnosis and maybe even prognosis of the disease. In the future, miRNA profiling could possibly be used in targeted screening, together with Prostate Specific Antigene (PSA) testing, to identify men with an elevated PrCa risk.
Collapse
Affiliation(s)
- Daniel Fischer
- School of Health Sciences, University of Tampere, 33014 Tampere, Finland
| | - Tiina Wahlfors
- BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere, Finland
| | - Henna Mattila
- BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere, Finland
| | - Hannu Oja
- Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
| | - Teuvo L. J. Tammela
- Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
| | - Johanna Schleutker
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
21
|
Emerging functions of alternative splicing coupled with nonsense-mediated decay. Biochem Soc Trans 2015; 42:1168-73. [PMID: 25110020 DOI: 10.1042/bst20140066] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Higher eukaryotes rely on AS (alternative splicing) of pre-mRNAs (mRNA precursors) to generate more than one protein product from a single gene and to regulate mRNA stability and translational activity. An important example of the latter function involves an interplay between AS and NMD (nonsense-mediated decay), a cytoplasmic quality control mechanism eliminating mRNAs containing PTCs (premature translation termination codons). Although originally identified as an error surveillance process, AS-NMD additionally provides an efficient strategy for deterministic regulation of gene expression outputs. In this review, we discuss recently published examples of AS-NMD and delineate functional contexts where recurrent use of this mechanism orchestrates expression of important genes.
Collapse
|
22
|
Lareau LF, Brenner SE. Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Mol Biol Evol 2015; 32:1072-9. [PMID: 25576366 PMCID: PMC4379411 DOI: 10.1093/molbev/msv002] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end.
Collapse
Affiliation(s)
- Liana F Lareau
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley Department of Biochemistry, Stanford University School of Medicine
| | - Steven E Brenner
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley
| |
Collapse
|
23
|
Li W, Kuzoff R, Wong CK, Tucker A, Lynch M. Characterization of newly gained introns in Daphnia populations. Genome Biol Evol 2014; 6:2218-34. [PMID: 25123113 PMCID: PMC4202315 DOI: 10.1093/gbe/evu174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 10(5) and 1.45 × 10(4) years ago, with a spike in intron proliferation approximately 5.2 × 10(4) to 1.22 × 10(5) years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin
| | - Robert Kuzoff
- Department of Biology, University of Wisconsin-Whitewater
| | - Chen Khuan Wong
- Genetics and Genomics Program, Department of Medicine, Boston University
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington
| |
Collapse
|
24
|
Niemelä EH, Oghabian A, Staals RHJ, Greco D, Pruijn GJM, Frilander MJ. Global analysis of the nuclear processing of transcripts with unspliced U12-type introns by the exosome. Nucleic Acids Res 2014; 42:7358-69. [PMID: 24848017 PMCID: PMC4066798 DOI: 10.1093/nar/gku391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
U12-type introns are a rare class of introns in the genomes of diverse eukaryotes. In the human genome, they number over 700. A subset of these introns has been shown to be spliced at a slower rate compared to the major U2-type introns. This suggests a rate-limiting regulatory function for the minor spliceosome in the processing of transcripts containing U12-type introns. However, both the generality of slower splicing and the subsequent fate of partially processed pre-mRNAs remained unknown. Here, we present a global analysis of the nuclear retention of transcripts containing U12-type introns and provide evidence for the nuclear decay of such transcripts in human cells. Using SOLiD RNA sequencing technology, we find that, in normal cells, U12-type introns are on average 2-fold more retained than the surrounding U2-type introns. Furthermore, we find that knockdown of RRP41 and DIS3 subunits of the exosome stabilizes an overlapping set of U12-type introns. RRP41 knockdown leads to slower decay kinetics of U12-type introns and globally upregulates the retention of U12-type, but not U2-type, introns. Our results indicate that U12-type introns are spliced less efficiently and are targeted by the exosome. These characteristics support their role in the regulation of cellular mRNA levels.
Collapse
Affiliation(s)
- Elina H Niemelä
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Ali Oghabian
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Raymond H J Staals
- Department of Biomolecular Chemistry, Radboud Institute for Molecular Life Sciences and Institute for Molecules and Materials, Radboud University Nijmegen,The Netherlands
| | - Dario Greco
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Radboud Institute for Molecular Life Sciences and Institute for Molecules and Materials, Radboud University Nijmegen,The Netherlands
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
25
|
Argente J, Flores R, Gutiérrez-Arumí A, Verma B, Martos-Moreno GÁ, Cuscó I, Oghabian A, Chowen JA, Frilander MJ, Pérez-Jurado LA. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol Med 2014; 6:299-306. [PMID: 24480542 PMCID: PMC3958305 DOI: 10.1002/emmm.201303573] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism
Collapse
Affiliation(s)
- Jesús Argente
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Micro-minicircle Gene Therapy: Implications of Size on Fermentation, Complexation, Shearing Resistance, and Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 2:e140. [PMID: 24399204 PMCID: PMC3910003 DOI: 10.1038/mtna.2013.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The minicircle (MC), composed of eukaryotic sequences only, is an interesting approach to increase the safety and efficiency of plasmid-based vectors for gene therapy. In this paper, we investigate micro-MC (miMC) vectors encoding small regulatory RNA. We use a construct encoding a splice-correcting U7 small nuclear RNA, which results in a vector of 650 base pairs (bp), as compared to a conventional 3600 bp plasmid carrying the same expression cassette. Furthermore, we construct miMCs of varying sizes carrying different number of these cassettes. This allows us to evaluate how size influences production, super-coiling, stability and efficiency of the vector. We characterize coiling morphology by atomic force microscopy and measure the resistance to shearing forces caused by an injector device, the Biojector. We compare the behavior of miMCs and plasmids in vitro using lipofection and electroporation, as well as in vivo in mice. We here show that when the size of the miMC is reduced, the formation of dimers and trimers increases. There seems to be a lower size limit for efficient expression. We demonstrate that miMCs are more robust than plasmids when exposed to shearing forces, and that they show extended expression in vivo.
Collapse
|
27
|
Rösel-Hillgärtner TD, Hung LH, Khrameeva E, Le Querrec P, Gelfand MS, Bindereif A. A novel intra-U1 snRNP cross-regulation mechanism: alternative splicing switch links U1C and U1-70K expression. PLoS Genet 2013; 9:e1003856. [PMID: 24146627 PMCID: PMC3798272 DOI: 10.1371/journal.pgen.1003856] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5′ splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments. Alternative splicing of U1-70K pre-mRNA creates the normal (exons 7–8) and a non-productive mRNA isoform, whose balance is determined by U1C protein levels. The non-productive isoform is generated through a U1C-dependent alternative 3′ splice site, which requires an adjacent cluster of regulatory 5′ splice sites and binding of intact U1 snRNPs. As a result of nonsense-mediated decay (NMD) of the non-productive isoform, U1-70K mRNA and protein levels are down-regulated, and U1C incorporation into the U1 snRNP is impaired. U1-70K/U1C-deficient particles are assembled, shifting the alternative splicing balance back towards productive U1-70K splicing, and restoring assembly of intact U1 snRNPs. Taken together, we established a novel feedback regulation that controls U1-70K/U1C homeostasis and ensures correct U1 snRNP assembly and function. The accurate removal of intervening sequences (introns) from precursor messenger RNAs (pre-mRNAs) represents an essential step in the expression of most eukaryotic protein-coding genes. Alternative splicing can create from a single primary transcript various mature mRNAs with diverse, sometimes even antagonistic, biological functions. Many human diseases are based on alternative-splicing defects, and most interestingly, certain defects are caused by mutations in general splicing factors that participate in each splicing event. To address the question of how a general splicing factor can regulate alternative splicing events, here we investigated the regulatory role of the U1C protein, a specific component of the U1 small nuclear ribonucleoprotein (snRNP) and important in initial 5′ splice site recognition. Our RNA-Seq analysis demonstrated that U1C affects more than 300 cases of alternative splicing in the human system. One U1C target, U1-70K, appeared to be particularly interesting, because both protein products are components of the U1 snRNP and functionally depend on each other. Analyzing the mechanistic basis of this intra-U1 snRNP cross-regulation, we discovered a U1C-dependent alternative splicing switch in the U1-70K pre-mRNA that regulates U1-70K expression. In sum, this feedback loop controls and links U1C and U1-70K homeostasis to guarantee correct U1 snRNP assembly and function.
Collapse
Affiliation(s)
| | - Lee-Hsueh Hung
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Ekaterina Khrameeva
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, Russia
| | - Patrick Le Querrec
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Mikhail S. Gelfand
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, Russia
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
28
|
Turunen JJ, Verma B, Nyman TA, Frilander MJ. HnRNPH1/H2, U1 snRNP, and U11 snRNP cooperate to regulate the stability of the U11-48K pre-mRNA. RNA (NEW YORK, N.Y.) 2013; 19:380-9. [PMID: 23335637 PMCID: PMC3677248 DOI: 10.1261/rna.036715.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alternative splicing (AS) is a major contributor to proteome diversity, but it also regulates gene expression by introducing premature termination codons (PTCs) that destabilize transcripts, typically via the nonsense-mediated decay (NMD) pathway. Such AS events often take place within long, conserved sequence elements, particularly in genes encoding various RNA binding proteins. AS-NMD is often activated by the protein encoded by the same gene, leading to a self-regulating feedback loop that maintains constant protein levels. However, cross-regulation between different RNA binding proteins is also common, giving rise to finely tuned regulatory networks. Recently, we described a feedback mechanism regulating two protein components of the U12-dependent spliceosome (U11-48K and U11/U12-65K) through a highly conserved sequence element. These elements contain a U11 snRNP-binding splicing enhancer (USSE), which, through the U11 snRNP, activates an upstream U2-type 3'ss, resulting in the degradation of the U11-48K mRNA by AS-NMD. Through phylogenetic analysis, we now identify a G-rich sequence element that is conserved in fishes as well as mammals. We show that this element binds hnRNPF/H proteins in vitro. Knockdown of hnRNPH1/H2 or mutations in the G-run both lead to enhanced activation of the 3'ss in vivo, suggesting that hnRNPH1/H2 proteins counteract the 3'ss activation. Furthermore, we provide evidence that U1 binding immediately downstream from the G-run similarly counteracts the U11-mediated activation of the alternative 3'ss. Thus, our results elucidate the mechanism in which snRNPs from both spliceosomes together with hnRNPH1/H2 proteins regulate the recognition and activation of the highly conserved alternative splice sites within the U11-48K pre-mRNA.
Collapse
|
29
|
Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:61-76. [PMID: 23074130 PMCID: PMC3584512 DOI: 10.1002/wrna.1141] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The removal of non-coding sequences, introns, from the mRNA precursors is an essential step in eukaryotic gene expression. U12-type introns are a minor subgroup of introns, distinct from the major or U2-type introns. U12-type introns are present in most eukaryotes but only account for less than 0.5% of all introns in any given genome. They are processed by a specific U12-dependent spliceosome, which is similar to, but distinct from, the major spliceosome. U12-type introns are spliced somewhat less efficiently than the major introns, and it is believed that this limits the expression of the genes containing such introns. Recent findings on the role of U12-dependent splicing in development and human disease have shown that it can also affect multiple cellular processes not directly related to the functions of the host genes of U12-type introns. At the same time, advances in understanding the regulation and phylogenetic distribution of the minor spliceosome are starting to shed light on how the U12-type introns and the minor spliceosome may have evolved. © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Janne J Turunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
30
|
Roca X, Karginov FV. RNA biology in a test tube--an overview of in vitro systems/assays. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:509-27. [PMID: 22447682 DOI: 10.1002/wrna.1115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro systems have provided a wealth of information in the field of RNA biology, as they constitute a superior and sometimes the unique approach to address many important questions. Such cell-free methods can be sorted by the degree of complexity of the preparation of enzymatic and/or regulatory activity. Progress in the study of pre-mRNA processing has largely relied on traditional in vitro methods, as these reactions have been recapitulated in cell-free systems. The pre-mRNA capping, editing, and cleavage/polyadenylation reactions have even been reconstituted using purified components, and the enzymes responsible for catalysis have been characterized by such techniques. In vitro splicing using nuclear or cytoplasmic extracts has yielded clues on spliceosome assembly, kinetics, and mechanisms of splicing and has been essential to elucidate the function of splicing factors. Coupled systems have been important to functionally connect distinct processes, like transcription and splicing. Extract preparation has also been adapted to cells from a variety of tissues and species, revealing general versus species-specific mechanisms. Cell-free assays have also been applied to newly discovered pathways such as those involving small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs). The first two pathways have been well characterized largely by in vitro methods, which need to be developed for piRNAs. Finally, new techniques, such as single-molecule studies, are continuously being established, providing new and important insights into the field. Thus, in vitro approaches have been, are, and will continue being at the forefront of RNA research.
Collapse
Affiliation(s)
- Xavier Roca
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | | |
Collapse
|
31
|
Saltzman AL, Pan Q, Blencowe BJ. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev 2011; 25:373-84. [PMID: 21325135 DOI: 10.1101/gad.2004811] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.
Collapse
Affiliation(s)
- Arneet L Saltzman
- Banting and Best Department of Medical Research, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | |
Collapse
|
32
|
Gene expression profiling of U12-type spliceosome mutant Drosophila reveals widespread changes in metabolic pathways. PLoS One 2010; 5:e13215. [PMID: 20949011 PMCID: PMC2952598 DOI: 10.1371/journal.pone.0013215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/15/2010] [Indexed: 01/31/2023] Open
Abstract
Background The U12-type spliceosome is responsible for the removal of a subset of introns from eukaryotic mRNAs. U12-type introns are spliced less efficiently than normal U2-type introns, which suggests a rate-limiting role in gene expression. The Drosophila genome contains about 20 U12-type introns, many of them in essential genes, and the U12-type spliceosome has previously been shown to be essential in the fly. Methodology/Principal Findings We have used a Drosophila line with a P-element insertion in U6atac snRNA, an essential component of the U12-type spliceosome, to investigate the impact of U12-type introns on gene expression at the organismal level during fly development. This line exhibits progressive accumulation of unspliced U12-type introns during larval development and the death of larvae at the third instar stage. Surprisingly, microarray and RT-PCR analyses revealed that most genes containing U12-type introns showed only mild perturbations in the splicing of U12-type introns. In contrast, we detected widespread downstream effects on genes that do not contain U12-type introns, with genes related to various metabolic pathways constituting the largest group. Conclusions/Significance U12-type intron-containing genes exhibited variable gene-specific responses to the splicing defect, with some genes showing up- or downregulation, while most did not change significantly. The observed residual U12-type splicing activity could be explained with the mutant U6atac allele having a low level of catalytic activity. Detailed analysis of all genes suggested that a defect in the splicing of the U12-type intron of the mitochondrial prohibitin gene may be the primary cause of the various downstream effects detected in the microarray analysis.
Collapse
|