1
|
Li Z, Wu K, Zou Y, Gong W, Wang P, Wang H. PREX1 depletion ameliorates high-fat diet-induced non-alcoholic fatty liver disease in mice and mitigates palmitic acid-induced hepatocellular injury via suppressing the NF-κB signaling pathway. Toxicol Appl Pharmacol 2022; 448:116074. [PMID: 35605788 DOI: 10.1016/j.taap.2022.116074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases worldwide. Oxidative stress has been considered a key factor in the pathogenesis of NAFLD. Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 (PREX1), a guanine nucleotide exchange factor for Rac, has been associated with inflammation and oxidative stress. This study aimed to investigate the biological function of PREX1 in the progression of NAFLD. Male C57BL/6 mice were fed a high-fat diet for 12 weeks to induce NAFLD in vivo. Adeno-associated virus type 8-mediated liver-specific PREX1 depletion was employed to investigate the role of PREX1 in the progression of high-fat diet-induced NAFLD. Murine hepatocyte cell line AML-12 was stimulated with palmitic acid for 24 h to induce steatosis in vitro. PREX1 depletion was carried out by transfection with PREX1 small interfering RNA. Results showed that PREX1 depletion exerted protective effects against lipid accumulation, oxidative stress and inflammation and inhibited activation of the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. Subsequently, NF-κB inhibitor BAY11-7082 was applied to investigate the role of the NF-κB signaling pathway in the protective effect of PREX1 inhibition against NAFLD. We confirmed that PREX1 inhibition mitigated palmitic acid-induced hepatocellular inflammation mainly via the NF-κB signaling pathway and lipid accumulation and oxidative stress at least partly via the NF-κB signaling pathway. This study highlights the biological function of PREX1 in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kanglin Wu
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yi Zou
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Wei Gong
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Hong Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Dysfunction of Trio GEF1 involves in excitatory/inhibitory imbalance and autism-like behaviors through regulation of interneuron migration. Mol Psychiatry 2021; 26:7621-7640. [PMID: 33963279 DOI: 10.1038/s41380-021-01109-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of highly inheritable neurodevelopmental disorders. Functional mutations in TRIO, especially in the GEF1 domain, are strongly implicated in ASDs, whereas the underlying neurobiological pathogenesis and molecular mechanisms remain to be clarified. Here we characterize the abnormal morphology and behavior of embryonic migratory interneurons (INs) upon Trio deficiency or GEF1 mutation in mice, which are mediated by the Trio GEF1-Rac1 activation and involved in SDF1α/CXCR4 signaling. In addition, the migration deficits are specifically associated with altered neural microcircuit, decreased inhibitory neurotransmission, and autism-like behaviors, which are reminiscent of some features observed in patients with ASDs. Furthermore, restoring the excitatory/inhibitory (E/I) imbalance via activation of GABA signaling rescues autism-like deficits. Our findings demonstrate a critical role of Trio GEF1 mediated signaling in IN migration and E/I balance, which are related to autism-related behavioral phenotypes.
Collapse
|
3
|
Nishikawa M, Sato K, Nakano S, Yamakawa H, Nagase T, Ueda H. Specific activation of PLEKHG2-induced serum response element-dependent gene transcription by four-and-a-half LIM domains (FHL) 1, but not FHL2 or FHL3. Small GTPases 2017; 10:361-366. [PMID: 28489964 DOI: 10.1080/21541248.2017.1327838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PLEKHG2 is a Gβγ- and Gαs-dependent guanine nucleotide exchange factor for Rac1 and Cdc42 small GTPases and has been shown to mediate signaling pathways such as those for actin cytoskeletal reorganization and serum response element (SRE)-dependent gene transcription. We have shown that the four-and-a-half LIM domains (FHL) 1 acts as a positive regulator of PLEKHG2. Here, we evaluated the other FHL family members and found that the FHL1A specifically regulate the PLEKHG2 activity. Moreover, FHL1A further enhanced Gβγ- and PLEKHG2-induced SRE-dependent gene transcription, whereas FHL1A partially restored the attenuated PLEKHG2-induced SRE-dependent gene transcription by Gαs. Our results suggest that FHL1A specifically interacts with PLEKHG2 to regulate a function of PLEKHG2 that is modified by the interaction of Gβγ and Gαs.
Collapse
Affiliation(s)
- Masashi Nishikawa
- a United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Yanagido, Gifu , Japan
| | - Katsuya Sato
- b Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine , Yanagido, Gifu , Japan
| | - Shun Nakano
- c Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University , Yanagido, Gifu , Japan
| | - Hisashi Yamakawa
- d Kazusa DNA Research Institute, Kazusa-kamatari , Kisarazu, Chiba , Japan
| | - Takahiro Nagase
- d Kazusa DNA Research Institute, Kazusa-kamatari , Kisarazu, Chiba , Japan
| | - Hiroshi Ueda
- a United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Yanagido, Gifu , Japan.,c Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University , Yanagido, Gifu , Japan
| |
Collapse
|
4
|
Moreno-Layseca P, Ucar A, Sun H, Wood A, Olabi S, Gilmore AP, Brennan K, Streuli CH. The requirement of integrins for breast epithelial proliferation. Eur J Cell Biol 2017; 96:227-239. [PMID: 28363396 DOI: 10.1016/j.ejcb.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022] Open
Abstract
Epithelial cells forming mammary gland ducts and alveoli require adhesion to the extracellular matrix for their function. Mammary epithelial cells need β1-integrins for normal cell cycle regulation. However, the role of β1-integrins in tumorigenesis has not been fully resolved. β1-integrin is necessary for tumour formation in transgenic mice expressing the Polyomavirus Middle T antigen, but it is dispensable in those overexpressing ErbB2. This suggests that some oncogenes can manage without β1-integrin to proliferate and form tumours, while others still require it. Here we have developed a model to test whether expression of an oncogene can surpass the need for β1-integrin to drive proliferation. We co-expressed the ErbB2 or Akt oncogenes with shRNA to target β1-integrin in mammary epithelial cells, and found that they show a differential dependence on β1-integrin for cell division. Moreover, we identified a key proliferative role of the Rac1-Pak axis downstream of β1-integrin signalling. Our data suggest that, in mammary epithelial cells, oncogenes with the ability to signal to Pak surpass the requirement of integrins for malignant transformation. This highlights the importance of using the correct combination therapy for breast cancer, depending on the oncogenes expressed in the tumour.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Ahmet Ucar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Heyuan Sun
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Amber Wood
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Safiah Olabi
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Andrew P Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Keith Brennan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
5
|
Gupta M, Qi X, Thakur V, Manor D. Tyrosine phosphorylation of Dbl regulates GTPase signaling. J Biol Chem 2014; 289:17195-202. [PMID: 24778185 DOI: 10.1074/jbc.m114.573782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are molecular "switches" that cycle between "on" (GTP-bound) and "off" (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.
Collapse
Affiliation(s)
- Meghana Gupta
- From the Departments of Pharmacology, and Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Xiaojun Qi
- Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Varsha Thakur
- Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Danny Manor
- From the Departments of Pharmacology, and Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
6
|
Gupta M, Kamynina E, Morley S, Chung S, Muakkassa N, Wang H, Brathwaite S, Sharma G, Manor D. Plekhg4 is a novel Dbl family guanine nucleotide exchange factor protein for rho family GTPases. J Biol Chem 2013; 288:14522-14530. [PMID: 23572525 DOI: 10.1074/jbc.m112.430371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the PLEKHG4 (puratrophin-1) gene are associated with the heritable neurological disorder autosomal dominant spinocerebellar ataxia. However, the biochemical functions of this gene product have not been described. We report here that expression of Plekhg4 in the murine brain is developmentally regulated, with pronounced expression in the newborn midbrain and brainstem that wanes with age and maximal expression in the cerebellar Purkinje neurons in adulthood. We show that Plekhg4 is subject to ubiquitination and proteasomal degradation, and its steady-state expression levels are regulated by the chaperones Hsc70 and Hsp90 and by the ubiquitin ligase CHIP. On the functional level, we demonstrate that Plekhg4 functions as a bona fide guanine nucleotide exchange factor (GEF) that facilitates activation of the small GTPases Rac1, Cdc42, and RhoA. Overexpression of Plekhg4 in NIH3T3 cells induces rearrangements of the actin cytoskeleton, specifically enhanced formation of lamellopodia and fillopodia. These findings indicate that Plekhg4 is an aggregation-prone member of the Dbl family GEFs and that regulation of GTPase signaling is critical for proper cerebellar function.
Collapse
Affiliation(s)
- Meghana Gupta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Samantha Morley
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Stacey Chung
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Hong Wang
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shayna Brathwaite
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Danny Manor
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|