1
|
Lima I, Borges F, Pombinho A, Chavarria D. The spindle assembly checkpoint: Molecular mechanisms and kinase-targeted drug discovery. Drug Discov Today 2025; 30:104355. [PMID: 40216293 DOI: 10.1016/j.drudis.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism required for the fidelity of chromosome segregation, ensuring that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. In cancer cells, SAC inactivation leads to aneuploidy beyond the cell's adaptation, culminating in cell death. This review provides a concise overview of the SAC signaling process and properties. Recent drug discovery strategies to selectively target kinases, particularly Aurora B and monopolar spindle kinase (MPS1), aimed at developing innovative anticancer agents able to override SAC are also presented.
Collapse
Affiliation(s)
- Inês Lima
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - António Pombinho
- i3S, Institute for Research and Innovation in Health, University of Porto 4200-135 Porto, Portugal; IBMC, Institute for Molecular and Cell Biology, University of Porto 4200-135 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
2
|
Chao SB, Zhang RR, Sun QY. Localization and function of APC15 during mouse oocyte meiotic progression. J Mol Histol 2025; 56:121. [PMID: 40153087 DOI: 10.1007/s10735-025-10404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is a critical regulator of cell cycle progression, with APC15 serving as an essential subunit. While the role of APC15 in mitosis is well characterized, its function during meiosis remains poorly understood. In this study, we investigated the expression, subcellular localization, and potential role of APC15 during mouse oocyte meiotic progression. Using immunofluorescence and confocal microscopy, we observed dynamic changes in APC15 localization throughout meiotic progression. Knockdown of APC15 via siRNA did not affect spindle organization, but led to meiotic arrest at metaphase I (MI) and impaired the removal of BUB3 from kinetochores, suggesting a disruption in Spindle Assembly Checkpoint (SAC) inactivation. Our results highlight the involvement of APC15 in the regulation of SAC and the transition from metaphase to anaphase in oocytes. These findings contribute to our understanding of APC15's role in meiotic regulation and provide insights into its potential impact on maintaining chromosomal stability during oocyte maturation.
Collapse
Affiliation(s)
- Shi-Bin Chao
- Reproductive Medicine Center, Yancheng Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Yancheng, Jiangsu, China
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Ren-Ren Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health and Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
4
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
5
|
Vazquez-Fernandez E, Yang J, Zhang Z, Andreeva AE, Emsley P, Barford D. A comparative study of the cryo-EM structures of Saccharomyces cerevisiae and human anaphase-promoting complex/cyclosome (APC/C). eLife 2024; 13:RP100821. [PMID: 39401078 PMCID: PMC11473103 DOI: 10.7554/elife.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that controls progression through the cell cycle by orchestrating the timely proteolysis of mitotic cyclins and other cell cycle regulatory proteins. Although structures of multiple human APC/C complexes have been extensively studied over the past decade, the Saccharomyces cerevisiae APC/C has been less extensively investigated. Here, we describe medium resolution structures of three S. cerevisiae APC/C complexes: unphosphorylated apo-APC/C and the ternary APC/CCDH1-substrate complex, and phosphorylated apo-APC/C. Whereas the overall architectures of human and S. cerevisiae APC/C are conserved, as well as the mechanism of CDH1 inhibition by CDK-phosphorylation, specific variations exist, including striking differences in the mechanism of coactivator-mediated stimulation of E2 binding, and the activation of APC/CCDC20 by phosphorylation. In contrast to human APC/C in which coactivator induces a conformational change of the catalytic module APC2:APC11 to allow E2 binding, in S. cerevisiae apo-APC/C the catalytic module is already positioned to bind E2. Furthermore, we find no evidence of a phospho-regulatable auto-inhibitory segment of APC1, that in the unphosphorylated human APC/C, sterically blocks the CDC20C-box binding site of APC8. Thus, although the functions of APC/C are conserved from S. cerevisiae to humans, molecular details relating to their regulatory mechanisms differ.
Collapse
Affiliation(s)
| | - Jing Yang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ziguo Zhang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Paul Emsley
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David Barford
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
6
|
Sitry-Shevah D, Miniowitz-Shemtov S, Liburkin Dan T, Hershko A. The Mitotic Checkpoint Complex controls the association of Cdc20 regulatory protein with the ubiquitin ligase APC/C in mitosis. Proc Natl Acad Sci U S A 2024; 121:e2413089121. [PMID: 39231204 PMCID: PMC11406269 DOI: 10.1073/pnas.2413089121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
The ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) and its regulatory protein Cdc20 play important roles in the control of different stages of mitosis. APC/C associated with Cdc20 is active and promotes metaphase-anaphase transition by targeting for degradation inhibitors of anaphase initiation. Earlier in mitosis, premature action of APC/C is prevented by the mitotic checkpoint (or spindle assembly checkpoint) system, which ensures that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. The active mitotic checkpoint system promotes the assembly of a Mitotic Checkpoint Complex (MCC), which binds to APC/C and inhibits its activity. The interaction of MCC with APC/C is strongly enhanced by Cdc20 bound to APC/C. While the association of Cdc20 with APC/C was known to be essential for both these stages of mitosis, it was not known how Cdc20 remains bound in spite of ongoing processes, phosphorylation and ubiquitylation, that stimulate its release from APC/C. We find that MCC strongly inhibits the release of Cdc20 from APC/C by the action of mitotic protein kinase Cdk1-cyclin B. This is not due to protection from phosphorylation of specific sites in Cdc20 that affect its interaction with APC/C. Rather, MCC stabilizes the binding to APC/C of partially phosphorylated forms of Cdc20. MCC also inhibits the autoubiquitylation of APC/C-bound Cdc20 and its ubiquitylation-promoted release from APC/C. We propose that these actions of MCC to maintain Cdc20 bound to APC/C in mitosis are essential for the control of mitosis during active mitotic checkpoint and in subsequent anaphase initiation.
Collapse
Affiliation(s)
- Danielle Sitry-Shevah
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa31096, Israel
| | - Shirly Miniowitz-Shemtov
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa31096, Israel
| | - Tanya Liburkin Dan
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa31096, Israel
| | - Avram Hershko
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa31096, Israel
| |
Collapse
|
7
|
Li Q, Chen Q, Zheng T, Wang F, Teng J, Zhou H, Chen J. CCDC68 Maintains Mitotic Checkpoint Activation by Promoting CDC20 Integration into the MCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406009. [PMID: 39018254 PMCID: PMC11425217 DOI: 10.1002/advs.202406009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 07/19/2024]
Abstract
The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Qingzhou Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Tao Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
| | - Haining Zhou
- Key Laboratory of Epigenetic Regulation and InterventionInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijing100871China
- Center for Quantitative BiologyPeking UniversityBeijing100871China
| |
Collapse
|
8
|
Ostapenko D, Solomon MJ. APC Cdh1-mediated degradation of Cdh1 is necessary for faithful meiotic chromosome segregation in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601619. [PMID: 39005361 PMCID: PMC11245022 DOI: 10.1101/2024.07.01.601619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is a ubiquitin ligase that promotes the ubiquitination and subsequent degradation of numerous cell cycle regulators during mitosis and in G1. Proteins are recruited to the APC/C by activator proteins such as Cdh1. During the cell cycle, Cdh1 is subject to precise regulation so that substrates are not degraded prematurely. We have explored the regulation of Cdh1 during the developmental transition into meiosis and sporulation in the budding yeast S. cerevisiae. Transition to sporulation medium triggers the degradation of Cdh1. Cdh1 degradation is mediated by the APC/C itself in a "trans" mechanism in which one molecule of Cdh1 recruits a second molecule of Cdh1 to the APC/C for ubiquitination. Degradation requires an intact glucose-sensing SNF1 protein kinase complex (orthologous to the mammalian AMPK nutritional sensor), which directly phosphorylates Cdh1 on Ser-200 within an unstructured N-terminal region. In the absence of phosphorylation, expression of a Cdh1-S200A mutant is fully stabilized, leading to chromosome instability and loss of viability. We hypothesize that Cdh1 degradation is necessary for the preservation of cell cycle regulators and chromosome cohesion proteins between the reductional and equational meiotic divisions, which occur without the intervening Gap or S phases found in mitotic cell cycles.
Collapse
Affiliation(s)
- Denis Ostapenko
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114
| | - Mark J. Solomon
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114
| |
Collapse
|
9
|
Huang W, Li X, Yang H, Huang H. The impact of maternal age on aneuploidy in oocytes: Reproductive consequences, molecular mechanisms, and future directions. Ageing Res Rev 2024; 97:102292. [PMID: 38582380 DOI: 10.1016/j.arr.2024.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Age-related aneuploidy in human oocytes is a major factor contributing to decreased fertility and adverse reproductive outcomes. As females age, their oocytes are more prone to meiotic chromosome segregation errors, leading primarily to aneuploidy. Elevated aneuploidy rates have also been observed in oocytes from very young, prepubertal conceptions. A key barrier to developing effective treatments for age-related oocyte aneuploidy is our incomplete understanding of the molecular mechanisms involved. The challenge is becoming increasingly critical as more people choose to delay childbearing, a trend that has significant societal implications. In this review, we summarize current knowledge regarding the process of oocyte meiosis and folliculogenesis, highlighting the relationship between age and chromosomal aberrations in oocytes and embryos, and integrate proposed mechanisms of age-related meiotic disturbances across structural, protein, and genomic levels. Our goal is to spur new research directions and therapeutic avenues.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Xinyuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Department of Obstetrics and Gynecology, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Xian F, Yang X, Xu G. Prognostic significance of CDC20 expression in malignancy patients: A meta-analysis. Front Oncol 2022; 12:1017864. [PMID: 36479068 PMCID: PMC9720739 DOI: 10.3389/fonc.2022.1017864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cell Division Cycle Protein 20(CDC20) is reported to promote cancer initiation, progression and drug resistance in many preclinical models and is demonstrated in human cancer tissues. However, the correlation between CDC20 and cancer patients' prognosis has not yet been systematically evaluated. Therefore, this present meta-analysis was performed to determine the prognostic value of CDC20 expression in various malignancy tumors. METHODS A thorough database search was performed in EMBASE, PubMed, Cochrane Library and Web of Science from inception to May 2022. Stata14.0 Software was used for the statistical analysis. The pooled hazard ratios(HRs) and their 95% confidence intervals (95% CIs) were used to analysis of overall survival (OS), recurrence-free survival (RFS), distant-metastasis free survival (DMFS). Qualities of the included literature were assessed by JBI Critical appraisal checklist. Egger's test was used to assess publication bias in the included studies. RESULTS Ten articles were selected, and 2342 cancer patients were enrolled. The cancer types include breast, colorectal, lung, gastric, oral, prostate, urothelial bladder cancer, and hepatocellular carcinoma. The result showed strong significant associations between high expression of CDC20 and endpoints: OS (HR 2.52, 95%CI 2.13-2.99; HR 2.05, 95% CI 1.50-2.82, respectively) in the multivariate analysis and in the univariate analysis. Also, high expression of CDC20 was significantly connected with poor RFS (HR 2.08, 95%CI 1.46-2.98) and poor DMFS (HR 4.49, 95%CI 1.57-12.85). The subgroup analysis was also performed, which revealed that CDC20 upregulated expression was related to poor OS in non-small cell lung cancer (HR 2.40, 95% CI 1.91-3.02). CONCLUSIONS This meta-analysis demonstrated that highly expressing CDC20 was associated with poor survival in human malignancy tumors. CDC20 may be a valuable prognostic predictive biomarker and a potential therapeutic target in various cancer parents.
Collapse
Affiliation(s)
- Feng Xian
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Xuegang Yang
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene 2022; 41:489-501. [PMID: 34775484 PMCID: PMC8782720 DOI: 10.1038/s41388-021-02106-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
Chromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP's interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.
Collapse
|
13
|
Arsenault HE, Ghizzoni JM, Leech CM, Diers AR, Gesta S, Vishnudas VK, Narain NR, Sarangarajan R, Benanti JA. Ubc1 turnover contributes to the spindle assembly checkpoint in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2021; 11:jkab346. [PMID: 34586382 PMCID: PMC8664427 DOI: 10.1093/g3journal/jkab346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022]
Abstract
The spindle assembly checkpoint protects the integrity of the genome by ensuring that chromosomes are properly attached to the mitotic spindle before they are segregated during anaphase. Activation of the spindle checkpoint results in inhibition of the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that triggers the metaphase-anaphase transition. Here, we show that levels of Ubc1, an E2 enzyme that functions in complex with the APC, modulate the response to spindle checkpoint activation in Saccharomyces cerevisiae. Overexpression of Ubc1 increased resistance to microtubule poisons, whereas Ubc1 shut-off sensitized cells. We also found that Ubc1 levels are regulated by the spindle checkpoint. Checkpoint activation or direct APC inhibition led to a decrease in Ubc1 levels, charging, and half-life. Additionally, stabilization of Ubc1 prevented its down-regulation by the spindle checkpoint and increased resistance to checkpoint-activating drugs. These results suggest that down-regulation of Ubc1 in response to spindle checkpoint signaling is necessary for a robust cell cycle arrest.
Collapse
Affiliation(s)
- Heather E Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie M Ghizzoni
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cassandra M Leech
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | - Jennifer A Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Koliopoulos MG, Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J 2021; 289:5100-5120. [PMID: 34143558 DOI: 10.1111/febs.16082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| |
Collapse
|
17
|
Yatskevich S, Kroonen JS, Alfieri C, Tischer T, Howes AC, Clijsters L, Yang J, Zhang Z, Yan K, Vertegaal ACO, Barford D. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Rep 2021; 34:108929. [PMID: 33789095 PMCID: PMC8028313 DOI: 10.1016/j.celrep.2021.108929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that controls cell cycle transitions. Its regulation by the spindle assembly checkpoint (SAC) is coordinated with the attachment of sister chromatids to the mitotic spindle. APC/C SUMOylation on APC4 ensures timely anaphase onset and chromosome segregation. To understand the structural and functional consequences of APC/C SUMOylation, we reconstituted SUMOylated APC/C for electron cryo-microscopy and biochemical analyses. SUMOylation of the APC/C causes a substantial rearrangement of the WHB domain of APC/C's cullin subunit (APC2WHB). Although APC/CCdc20 SUMOylation results in a modest impact on normal APC/CCdc20 activity, repositioning APC2WHB reduces the affinity of APC/CCdc20 for the mitotic checkpoint complex (MCC), the effector of the SAC. This attenuates MCC-mediated suppression of APC/CCdc20 activity, allowing for more efficient ubiquitination of APC/CCdc20 substrates in the presence of the MCC. Thus, SUMOylation stimulates the reactivation of APC/CCdc20 when the SAC is silenced, contributing to timely anaphase onset.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessie S Kroonen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Claudio Alfieri
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Thomas Tischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anna C Howes
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Linda Clijsters
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kaige Yan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
18
|
Holder J, Mohammed S, Barr FA. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020; 9:e59885. [PMID: 32869743 PMCID: PMC7529458 DOI: 10.7554/elife.59885] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Alfieri C, Tischer T, Barford D. A unique binding mode of Nek2A to the APC/C allows its ubiquitination during prometaphase. EMBO Rep 2020; 21:e49831. [PMID: 32307883 PMCID: PMC7271329 DOI: 10.15252/embr.201949831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
The anaphase-promoting complex (APC/C) is the key E3 ubiquitin ligase which directs mitotic progression and exit by catalysing the sequential ubiquitination of specific substrates. The activity of the APC/C in mitosis is restrained by the spindle assembly checkpoint (SAC), which coordinates chromosome segregation with the assembly of the mitotic spindle. The SAC effector is the mitotic checkpoint complex (MCC), which binds and inhibits the APC/C. It is incompletely understood how the APC/C switches substrate specificity in a cell cycle-specific manner. For instance, it is unclear how in prometaphase, when APC/C activity towards cyclin B and securin is repressed by the MCC, the kinase Nek2A is ubiquitinated. Here, we combine biochemical and structural analysis with functional studies in cells to show that Nek2A is a conformational-specific binder of the APC/C-MCC complex (APC/CMCC ) and that, in contrast to cyclin A, Nek2A can be ubiquitinated efficiently by the APC/C in conjunction with both the E2 enzymes UbcH10 and UbcH5. We propose that these special features of Nek2A allow its prometaphase-specific ubiquitination.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
Institute of Cancer ResearchLondonUK
| | | | | |
Collapse
|
20
|
Pachis ST, Hiruma Y, Tromer EC, Perrakis A, Kops GJPL. Interactions between N-terminal Modules in MPS1 Enable Spindle Checkpoint Silencing. Cell Rep 2020; 26:2101-2112.e6. [PMID: 30784592 DOI: 10.1016/j.celrep.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
Abstract
Faithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to kinetochores to initiate SAC signaling and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here, we show that a helical fragment within the kinetochore-targeting N-terminal extension (NTE) module of MPS1 is required for interactions with kinetochores and forms intramolecular interactions with its adjacent tetratricopeptide repeat (TPR) domain. Bypassing this NTE-TPR interaction results in high MPS1 levels at kinetochores due to loss of regulatory input into MPS1 localization, inefficient MPS1 delocalization upon microtubule attachment, and SAC silencing defects. These results show that SAC responsiveness to attachments relies on regulated intramolecular interactions in MPS1 and highlight the sensitivity of mitosis to perturbations in the dynamics of the MPS1-NDC80-C interactions.
Collapse
Affiliation(s)
- Spyridon T Pachis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands
| | - Yoshitaka Hiruma
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Anastassis Perrakis
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands.
| |
Collapse
|
21
|
Ruggiero A, Katou Y, Shirahige K, Séveno M, Piatti S. The Phosphatase PP1 Promotes Mitotic Slippage through Mad3 Dephosphorylation. Curr Biol 2020; 30:335-343.e5. [PMID: 31928870 DOI: 10.1016/j.cub.2019.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022]
Abstract
Accurate chromosome segregation requires bipolar attachment of kinetochores to spindle microtubules. A conserved surveillance mechanism, the spindle assembly checkpoint (SAC), responds to lack of kinetochore-microtubule connections and delays anaphase onset until all chromosomes are bipolarly attached [1]. SAC signaling fires at kinetochores and involves a soluble mitotic checkpoint complex (MCC) that inhibits the anaphase-promoting complex (APC) [2, 3]. The mitotic delay imposed by SAC, however, is not everlasting. If kinetochores fail to establish bipolar connections, cells can escape from the SAC-induced mitotic arrest through a process called mitotic slippage [4]. Mitotic slippage occurs in the presence of SAC signaling at kinetochores [5, 6], but whether and how MCC stability and APC inhibition are actively controlled during slippage is unknown. The PP1 phosphatase has emerged as a key factor in SAC silencing once all kinetochores are bipolarly attached [7, 8]. PP1 turns off SAC signaling through dephosphorylation of the SAC scaffold Knl1/Blinkin at kinetochores [9-11]. Here, we show that, in budding yeast, PP1 is also required for mitotic slippage. However, its involvement in this process is not linked to kinetochores but rather to MCC stability. We identify S268 of Mad3 as a critical target of PP1 in this process. Mad3 S268 dephosphorylation destabilizes the MCC without affecting the initial SAC-induced mitotic arrest. Conversely, it accelerates mitotic slippage and overcomes the slippage defect of PP1 mutants. Thus, slippage is not the mere consequence of incomplete APC inactivation that brings about mitotic exit, as originally proposed, but involves the exertive antagonism between kinases and phosphatases.
Collapse
Affiliation(s)
- Antonella Ruggiero
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Yuki Katou
- Research Center for Epigenetic Disease, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, University of Montpellier, 34000 Montpellier, France
| | - Simonetta Piatti
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France.
| |
Collapse
|
22
|
Mizrak A, Morgan DO. Polyanions provide selective control of APC/C interactions with the activator subunit. Nat Commun 2019; 10:5807. [PMID: 31862931 PMCID: PMC6925294 DOI: 10.1038/s41467-019-13864-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023] Open
Abstract
Transient interactions between the anaphase-promoting complex/cyclosome (APC/C) and its activator subunit Cdc20 or Cdh1 generate oscillations in ubiquitylation activity necessary to maintain the order of cell cycle events. Activator binds the APC/C with high affinity and exhibits negligible dissociation kinetics in vitro, and it is not clear how the rapid turnover of APC/C-activator complexes is achieved in vivo. Here, we describe a mechanism that controls APC/C-activator interactions based on the availability of substrates. We find that APC/C-activator dissociation is stimulated by abundant cellular polyanions such as nucleic acids and polyphosphate. Polyanions also interfere with substrate ubiquitylation. However, engagement with high-affinity substrate blocks the inhibitory effects of polyanions on activator binding and APC/C activity. We propose that this mechanism amplifies the effects of substrate affinity on APC/C function, stimulating processive ubiquitylation of high-affinity substrates and suppressing ubiquitylation of low-affinity substrates.
Collapse
Affiliation(s)
- Arda Mizrak
- Department of Physiology, University of California, San Francisco, CA, 94143, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
23
|
Melloy PG. The anaphase-promoting complex: A key mitotic regulator associated with somatic mutations occurring in cancer. Genes Chromosomes Cancer 2019; 59:189-202. [PMID: 31652364 DOI: 10.1002/gcc.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that helps control chromosome separation and exit from mitosis in many different kinds of organisms, including yeast, flies, worms, and humans. This review represents a new perspective on the connection between APC/C subunit mutations and cancer. The complex nature of APC/C and limited mutation analysis of its subunits has made it difficult to determine the relationship of each subunit to cancer. In this work, cancer genomic data were examined to identify APC/C subunits with a greater than 5% alteration frequency in 11 representative cancers using the cBioPortal database. Using the Genetic Determinants of Cancer Patient Survival database, APC/C subunits were also studied and found to be significantly associated with poor patient prognosis in several cases. In comparing these two kinds of cancer genomics data to published large-scale genomic analyses looking for cancer driver genes, ANAPC1 and ANAPC3/CDC27 stood out as being represented in all three types of analyses. Seven other subunits were found to be associated both with >5% alteration frequency in certain cancers and being associated with an effect on cancer patient prognosis. The aim of this review is to provide new approaches for investigators conducting in vivo studies of APC/C subunits and cancer progression. In turn, a better understanding of these APC/C subunits and their role in different cancers will help scientists design drugs that are more precisely targeted to certain cancers, using APC/C mutation status as a biomarker.
Collapse
Affiliation(s)
- Patricia G Melloy
- Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, New Jersey
| |
Collapse
|
24
|
Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett 2019; 593:2889-2907. [PMID: 31469407 DOI: 10.1002/1873-3468.13591] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
25
|
Dilshara MG, Jayasooriya RGPT, Karunarathne WAHM, Choi YH, Kim GY. Camptothecin induces mitotic arrest through Mad2-Cdc20 complex by activating the JNK-mediated Sp1 pathway. Food Chem Toxicol 2019; 127:143-155. [PMID: 30885713 DOI: 10.1016/j.fct.2019.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
Camptothecin (CPT) is a popular therapeutic agent that targets topoisomerase I. Our findings demonstrated that CPT-induced microtubule polymerization results in markedly increased histone H3 phosphorylation. CPT also enhanced interactions between the mitotic checkpoint proteins, Mad2 and Cdc20, and thereby increased mitotic arrest. Transient knockdown of Mad2 completely restored cell cycle progression from CPT-induced mitotic arrest, while simultaneously reduced cyclin B1 and Cdk1 expression. Moreover, we found that c-Jun N-terminal kinase (JNK) acts upstream of Sp1, which upregulates p21-mediated mitotic arrest in response to CPT; furthermore, knockdown of p21 restored cell cycle progression, while inhibition of Cdks completely restored cell cycle progression from CPT-induced mitotic arrest. We hypothesized that, during mitotic arrest in response to CPT, cell survival signaling blocks apoptosis, thereby enhancing mitotic arrest. As expected, a caspase-9 inhibitor, z-LEHD-FMK, and an autophagy inhibitor, 3-methyladenine (3 MA), significantly diminished CPT-induced mitotic arrest. On the other hand, when Mad2 was depleted, z-LEHD-FMK and 3 MA markedly increased apoptosis, and restored cell cycle progression. Taken together, these results suggest that CPT decodes the action of topoisomerase I-mediated tubulin targeting drugs, leading to mitotic arrest by upregulating Mad2 through the JNK-mediated Sp1 pathway and autophagy formation from tubulin polymerization.
Collapse
Affiliation(s)
| | | | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
26
|
Abstract
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
27
|
Choi E, Yu H. Spindle Checkpoint Regulators in Insulin Signaling. Front Cell Dev Biol 2018; 6:161. [PMID: 30555826 PMCID: PMC6281718 DOI: 10.3389/fcell.2018.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation during mitosis and guards against aneuploidy. Insulin signaling governs metabolic homeostasis and cell growth, and its dysregulation leads to metabolic disorders, such as diabetes. These critical pathways have been extensively investigated, but a link between the two has not been established until recently. Our recent study reveals a critical role of spindle checkpoint regulators in insulin signaling and metabolic homeostasis through regulating endocytosis of the insulin receptor (IR). These findings have linked spindle checkpoint proteins to metabolic regulation, expanding the connection between cell division and metabolism. Here, we briefly review the unexpected roles of spindle checkpoint regulators in vesicle trafficking and insulin signaling.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
28
|
Watson ER, Brown NG, Peters JM, Stark H, Schulman BA. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Trends Cell Biol 2018; 29:117-134. [PMID: 30482618 DOI: 10.1016/j.tcb.2018.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) E3 ligase controls mitosis and nonmitotic pathways through interactions with proteins that coordinate ubiquitylation. Since the discovery that the catalytic subunits of APC/C are conformationally dynamic cullin and RING proteins, many unexpected and intricate regulatory mechanisms have emerged. Here, we review structural knowledge of this regulation, focusing on: (i) coactivators, E2 ubiquitin (Ub)-conjugating enzymes, and inhibitors engage or influence multiple sites on APC/C including the cullin-RING catalytic core; and (ii) the outcomes of these interactions rely on mobility of coactivators and cullin-RING domains, which permits distinct conformations specifying different functions. Thus, APC/C is not simply an interaction hub, but is instead a dynamic, multifunctional molecular machine whose structure is remodeled by binding partners to achieve temporal ubiquitylation regulating cell division.
Collapse
Affiliation(s)
- Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Campus Vienna Biocenter (VBC) 1, 1030 Vienna, Austria
| | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
29
|
Kim DH, Han JS, Ly P, Ye Q, McMahon MA, Myung K, Corbett KD, Cleveland DW. TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC. Nat Commun 2018; 9:4354. [PMID: 30341343 PMCID: PMC6195577 DOI: 10.1038/s41467-018-06774-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Joo Seok Han
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Peter Ly
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Moira A McMahon
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.,Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA, 92010, USA
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry, University of California-San Diego, La Jolla, CA, 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
30
|
Gross F, Bonaiuti P, Hauf S, Ciliberto A. Implications of alternative routes to APC/C inhibition by the mitotic checkpoint complex. PLoS Comput Biol 2018; 14:e1006449. [PMID: 30199529 PMCID: PMC6157902 DOI: 10.1371/journal.pcbi.1006449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/26/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023] Open
Abstract
The mitotic checkpoint (also called spindle assembly checkpoint) is a signaling pathway that ensures faithful chromosome segregation. Mitotic checkpoint proteins inhibit the anaphase-promoting complex (APC/C) and its activator Cdc20 to prevent precocious anaphase. Checkpoint signaling leads to a complex of APC/C, Cdc20, and checkpoint proteins, in which the APC/C is inactive. In principle, this final product of the mitotic checkpoint can be obtained via different pathways, whose relevance still needs to be fully ascertained experimentally. Here, we use mathematical models to compare the implications on checkpoint response of the possible pathways leading to APC/C inhibition. We identify a previously unrecognized funneling effect for Cdc20, which favors Cdc20 incorporation into the inhibitory complex and therefore promotes checkpoint activity. Furthermore, we find that the presence or absence of one specific assembly reaction determines whether the checkpoint remains functional at elevated levels of Cdc20, which can occur in cancer cells. Our results reveal the inhibitory logics behind checkpoint activity, predict checkpoint efficiency in perturbed situations, and could inform molecular strategies to treat malignancies that exhibit Cdc20 overexpression. Cell division is a fundamental event in the life of cells. It requires that a mother cell gives rise to two daughters which carry the same genetic material of their mother. Thus, during each cell cycle the genetic material needs to be replicated, compacted into chromosomes and redistributed to the two daughter cells. Any mistake in chromosome segregation would attribute the wrong number of chromosomes to the progeny. Hence, the process of chromosome segregation is closely watched by a surveillance mechanism known as the mitotic checkpoint. The molecular players of the checkpoint pathway are well known: we know both the input (ie, the species to be inhibited and their inhibitors), and the output (ie, the inhibited species). However, we do not exactly know the path that leads from the former to the latter. In this manuscript, we use a mathematical approach to explore the properties of plausible mitotic checkpoint networks. We find that seemingly similar circuits show very different behaviors for high levels of the protein targeted by the mitotic checkpoint, Cdc20. Interestingly, this protein is often overexpressed in cancer cells. For physiological levels of Cdc20, instead, all the models we have analyzed are capable to mount an efficient response. We find that this is due to a series of consecutive protein-protein binding reactions that funnel Cdc20 towards its inhibited state. We call this the funneling effect. Our analysis helps understanding the inhibitory logics underlying the checkpoint, and proposes new concepts that could be applied to other inhibitory pathways.
Collapse
Affiliation(s)
- Fridolin Gross
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States of America
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail: (SH); (AC)
| | - Andrea Ciliberto
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
- * E-mail: (SH); (AC)
| |
Collapse
|
31
|
Bonacci T, Suzuki A, Grant GD, Stanley N, Cook JG, Brown NG, Emanuele MJ. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J 2018; 37:e98701. [PMID: 29973362 PMCID: PMC6092620 DOI: 10.15252/embj.201798701] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and key regulator of cell cycle progression. Since APC/C promotes the degradation of mitotic cyclins, it controls cell cycle-dependent oscillations in cyclin-dependent kinase (CDK) activity. Both CDKs and APC/C control a large number of substrates and are regulated by analogous mechanisms, including cofactor-dependent activation. However, whereas substrate dephosphorylation is known to counteract CDK, it remains largely unknown whether deubiquitinating enzymes (DUBs) antagonize APC/C substrate ubiquitination during mitosis. Here, we demonstrate that Cezanne/OTUD7B is a cell cycle-regulated DUB that opposes the ubiquitination of APC/C targets. Cezanne is remarkably specific for K11-linked ubiquitin chains, which are formed by APC/C in mitosis. Accordingly, Cezanne binds established APC/C substrates and reverses their APC/C-mediated ubiquitination. Cezanne depletion accelerates APC/C substrate degradation and causes errors in mitotic progression and formation of micronuclei. These data highlight the importance of tempered APC/C substrate destruction in maintaining chromosome stability. Furthermore, Cezanne is recurrently amplified and overexpressed in numerous malignancies, suggesting a potential role in genome maintenance and cancer cell proliferation.
Collapse
Affiliation(s)
- Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aussie Suzuki
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Alfieri C, Chang L, Barford D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 2018; 559:274-278. [PMID: 29973720 PMCID: PMC6057611 DOI: 10.1038/s41586-018-0281-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
Abstract
The maintenance of genome stability during mitosis is coordinated by the spindle assembly checkpoint (SAC) through its effector the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex (APC/C, also known as the cyclosome)1,2. Unattached kinetochores control MCC assembly by catalysing a change in the topology of the β-sheet of MAD2 (an MCC subunit), thereby generating the active closed MAD2 (C-MAD2) conformer3-5. Disassembly of free MCC, which is required for SAC inactivation and chromosome segregation, is an ATP-dependent process driven by the AAA+ ATPase TRIP13. In combination with p31comet, an SAC antagonist6, TRIP13 remodels C-MAD2 into inactive open MAD2 (O-MAD2)7-10. Here, we present a mechanism that explains how TRIP13-p31comet disassembles the MCC. Cryo-electron microscopy structures of the TRIP13-p31comet-C-MAD2-CDC20 complex reveal that p31comet recruits C-MAD2 to a defined site on the TRIP13 hexameric ring, positioning the N terminus of C-MAD2 (MAD2NT) to insert into the axial pore of TRIP13 and distorting the TRIP13 ring to initiate remodelling. Molecular modelling suggests that by gripping MAD2NT within its axial pore, TRIP13 couples sequential ATP-driven translocation of its hexameric ring along MAD2NT to push upwards on, and simultaneously rotate, the globular domains of the p31comet-C-MAD2 complex. This unwinds a region of the αA helix of C-MAD2 that is required to stabilize the C-MAD2 β-sheet, thus destabilizing C-MAD2 in favour of O-MAD2 and dissociating MAD2 from p31comet. Our study provides insights into how specific substrates are recruited to AAA+ ATPases through adaptor proteins and suggests a model of how translocation through the axial pore of AAA+ ATPases is coupled to protein remodelling.
Collapse
Affiliation(s)
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
33
|
Schuyler SC, Wu YFO, Chen HY, Ding YS, Lin CJ, Chu YT, Chen TC, Liao L, Tsai WW, Huang A, Wang LI, Liao TW, Jhuo JH, Cheng V. Peptide inhibitors of the anaphase promoting-complex that cause sensitivity to microtubule poison. PLoS One 2018; 13:e0198930. [PMID: 29883473 PMCID: PMC5993284 DOI: 10.1371/journal.pone.0198930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/29/2018] [Indexed: 02/01/2023] Open
Abstract
There is an interest in identifying Anaphase Promoting-Complex/Cyclosome (APC/C) inhibitors that lead to sensitivity to microtubule poisons as a strategy for targeting cancer cells. Using budding yeast Saccharomyces cerevisiae, peptides derived from the Mitotic Arrest Deficient 2 (Mad2)-binding motif of Cell Division Cycle 20 (Cdc20) were observed to inhibit both Cdc20- and CDC20 Homology 1 (Cdh1)-dependent APC/C activity. Over expression of peptides in vivo led to sensitivity to a microtubule poison and, in a recovery from a microtubule poison arrest, delayed degradation of yeast Securin protein Precocious Dissociation of Sisters 1 (Pds1). Peptides with mutations in the Cdc20 activating KILR-motif still bound APC/C, but lost the ability to inhibit APC/C in vitro and lost the ability to induce sensitivity to a microtubule poison in vivo. Thus, an APC/C binding and activation motif that promotes mitotic progression, namely the Cdc20 KILR-motif, can also function as an APC/C inhibitor when present in excess. Another activator for mitotic progression after recovery from microtubule poison is p31comet, where a yeast predicted open-reading frame YBR296C-A encoding a 39 amino acid predicted protein was identified by homology to p31comet, and named Tiny Yeast Comet 1 (TYC1). Tyc1 over expression resulted in sensitivity to microtubule poison. Tyc1 inhibited both APC/CCdc20 and APC/CCdh1 activities in vitro and bound to APC/C. A homologous peptide derived from human p31comet bound to and inhibited yeast APC/C demonstrating evolutionary retention of these biochemical activities. Cdc20 Mad2-binding motif peptides and Tyc1 disrupted the ability of the co-factors Cdc20 and Cdh1 to bind to APC/C, and co-over expression of both together in vivo resulted in an increased sensitivity to microtubule poison. We hypothesize that Cdc20 Mad2-binding motif peptides, Tyc1 and human hp31 peptide can serve as novel molecular tools for investigating APC/C inhibition that leads to sensitivity to microtubule poison in vivo.
Collapse
Affiliation(s)
- Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan
- * E-mail:
| | - Yueh-Fu Olivia Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsin-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yi-Shan Ding
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chia-Jung Lin
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Ting Chu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ting-Chun Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Louis Liao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Wei-Wei Tsai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Anna Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Lin-Ing Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ting-Wei Liao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jia-Hua Jhuo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Vivien Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
34
|
Skowyra A, Allan LA, Saurin AT, Clarke PR. USP9X Limits Mitotic Checkpoint Complex Turnover to Strengthen the Spindle Assembly Checkpoint and Guard against Chromosomal Instability. Cell Rep 2018; 23:852-865. [PMID: 29669289 PMCID: PMC5917450 DOI: 10.1016/j.celrep.2018.03.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 02/04/2018] [Accepted: 03/21/2018] [Indexed: 02/09/2023] Open
Abstract
Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which delays progression through mitosis until every chromosome has stably attached to spindle microtubules via the kinetochore. We show here that the deubiquitinase USP9X strengthens the SAC by antagonizing the turnover of the mitotic checkpoint complex produced at unattached kinetochores. USP9X thereby opposes activation of anaphase-promoting complex/cyclosome (APC/C) and specifically inhibits the mitotic degradation of SAC-controlled APC/C substrates. We demonstrate that depletion or loss of USP9X reduces the effectiveness of the SAC, elevates chromosome segregation defects, and enhances chromosomal instability (CIN). These findings provide a rationale to explain why loss of USP9X could be either pro- or anti-tumorigenic depending on the existing level of CIN.
Collapse
Affiliation(s)
- Agnieszka Skowyra
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Lindsey A Allan
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Adrian T Saurin
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | - Paul R Clarke
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK; The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, 37 Kent Street, Woolloongabba QLD 4102, Australia.
| |
Collapse
|
35
|
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit.
Collapse
Affiliation(s)
- Christine C Lee
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
36
|
Role of ubiquitylation of components of mitotic checkpoint complex in their dissociation from anaphase-promoting complex/cyclosome. Proc Natl Acad Sci U S A 2018; 115:1777-1782. [PMID: 29432156 DOI: 10.1073/pnas.1720312115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mitotic checkpoint system ensures the fidelity of chromosome segregation in mitosis by preventing premature initiation of anaphase until correct bipolar attachment of chromosomes to the mitotic spindle is reached. It promotes the assembly of a mitotic checkpoint complex (MCC), composed of BubR1, Bub3, Cdc20, and Mad2, which inhibits the activity of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. When the checkpoint is satisfied, anaphase is initiated by the disassembly of MCC. Previous studies indicated that the dissociation of APC/C-bound MCC requires ubiquitylation and suggested that the target of ubiquitylation is the Cdc20 component of MCC. However, it remained unknown how ubiquitylation causes the release of MCC from APC/C and its disassembly and whether ubiquitylation of additional proteins is involved in this process. We find that ubiquitylation causes the dissociation of BubR1 from Cdc20 in MCC and suggest that this may lead to the release of MCC components from APC/C. BubR1 in MCC is ubiquitylated by APC/C, although to a lesser degree than Cdc20. The extent of BubR1 ubiquitylation was markedly increased in recombinant MCC that contained a lysine-less mutant of Cdc20. Mutation of lysine residues to arginines in the N-terminal region of BubR1 partially inhibited its ubiquitylation and slowed down the release of MCC from APC/C, provided that Cdc20 ubiquitylation was also blocked. It is suggested that ubiquitylation of both Cdc20 and BubR1 may be involved in their dissociation from each other and in the release of MCC components from APC/C.
Collapse
|
37
|
Bonaiuti P, Chiroli E, Gross F, Corno A, Vernieri C, Štefl M, Cosentino Lagomarsino M, Knop M, Ciliberto A. Cells Escape an Operational Mitotic Checkpoint through a Stochastic Process. Curr Biol 2017; 28:28-37.e7. [PMID: 29249657 DOI: 10.1016/j.cub.2017.11.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022]
Abstract
Improperly attached chromosomes activate the mitotic checkpoint that arrests cell division before anaphase. Cells can maintain an arrest for several hours but eventually will resume proliferation, a process we refer to as adaptation. Whether adapting cells bypass an active block or whether the block has to be removed to resume proliferation is not clear. Likewise, it is not known whether all cells of a genetically homogeneous population are equally capable to adapt. Here, we show that the mitotic checkpoint is operational when yeast cells adapt and that each cell has the same propensity to adapt. Our results are consistent with a model of the mitotic checkpoint where adaptation is driven by random fluctuations of APC/CCdc20, the molecular species inhibited by the checkpoint. Our data provide a quantitative framework for understanding how cells overcome a constant stimulus that halts cell cycle progression.
Collapse
Affiliation(s)
- Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Elena Chiroli
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Fridolin Gross
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Andrea Corno
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Claudio Vernieri
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133 Milan, Italy
| | - Martin Štefl
- DKFZ-ZMBH Alliance, Centre for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Marco Cosentino Lagomarsino
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy; Sorbonne Universités, UPMC Univ Paris 06, 5 Place Jussieu, 75005 Paris, France; CNRS, UMR 7238 "Biologie Computationnelle et Quantitative," UPMC, Institut de Biologie Paris Seine, 4 Place Jussieu, 75005 Paris, France
| | - Michael Knop
- DKFZ-ZMBH Alliance, Centre for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; DKFZ-ZMBH Alliance, Department of Cell and Tumour Biology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andrea Ciliberto
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
38
|
Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat Commun 2017; 8:1956. [PMID: 29208896 PMCID: PMC5717197 DOI: 10.1038/s41467-017-02012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The spindle checkpoint maintains genomic stability and prevents aneuploidy. Unattached kinetochores convert the latent open conformer of the checkpoint protein Mad2 (O-Mad2) to the active closed conformer (C-Mad2), bound to Cdc20. C-Mad2–Cdc20 is incorporated into the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C). The C-Mad2-binding protein p31comet and the ATPase TRIP13 promote MCC disassembly and checkpoint silencing. Here, using nuclear magnetic resonance (NMR) spectroscopy, we show that TRIP13 and p31comet catalyze the conversion of C-Mad2 to O-Mad2, without disrupting its stably folded core. We determine the crystal structure of human TRIP13, and identify functional TRIP13 residues that mediate p31comet–Mad2 binding and couple ATP hydrolysis to local unfolding of Mad2. TRIP13 and p31comet prevent APC/C inhibition by MCC components, but cannot reactivate APC/C already bound to MCC. Therefore, TRIP13–p31comet intercepts and disassembles free MCC not bound to APC/C through mediating the local unfolding of the Mad2 C-terminal region. The spindle checkpoint ensures the fidelity of chromosome segregation during mitosis and meiosis. Here the authors use a combination of biochemical and structural biology approaches to show how the TRIP13 ATPase and its adaptor, p31comet, catalyze the conversion of the checkpoint protein Mad2 between latent and active forms
Collapse
|
39
|
Taming the Beast: Control of APC/C Cdc20-Dependent Destruction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:111-121. [PMID: 29133301 DOI: 10.1101/sqb.2017.82.033712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit ubiquitin ligase that triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates cyclin B and securin for destruction. APC/C activity toward these two key substrates requires the coactivator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with high accuracy, APC/CCdc20 activity must be tightly controlled. Here, we discuss the mechanisms that regulate APC/CCdc20 activity both before and during mitosis. We focus our discussion primarily on the chromosomal pathways that both accelerate and delay APC/C activation by targeting Cdc20 to opposing fates. The findings discussed provide an overview of how cells control the activation of this major cell cycle regulator to ensure both accurate and timely cell division.
Collapse
|
40
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
41
|
Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017; 216:2259-2271. [PMID: 28684425 PMCID: PMC5551716 DOI: 10.1083/jcb.201703170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Gilberto and Peter discuss the role of ubiquitylation in the regulation of DNA replication and mitosis. The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation.
Collapse
Affiliation(s)
- Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.,Molecular Life Science PhD Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
42
|
May KM, Paldi F, Hardwick KG. Fission Yeast Apc15 Stabilizes MCC-Cdc20-APC/C Complexes, Ensuring Efficient Cdc20 Ubiquitination and Checkpoint Arrest. Curr Biol 2017; 27:1221-1228. [PMID: 28366744 PMCID: PMC5405113 DOI: 10.1016/j.cub.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
Abstract
During mitosis, cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C subunits (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with the APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between the MCC and APC/C, are defective in poly-ubiquitination of Cdc20, and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells, and the implications of this observation are discussed.
Collapse
Affiliation(s)
- Karen M May
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Flora Paldi
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
43
|
Different Functionality of Cdc20 Binding Sites within the Mitotic Checkpoint Complex. Curr Biol 2017; 27:1213-1220. [PMID: 28366743 DOI: 10.1016/j.cub.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022]
Abstract
The mitotic checkpoint is a cellular safeguard that prevents chromosome missegregation in eukaryotic cells [1, 2]. Suboptimal functioning may foster chromosome missegregation in cancer cells [3]. Checkpoint signaling produces the "mitotic checkpoint complex" (MCC), which prevents anaphase by targeting Cdc20, the activator of the anaphase-promoting complex/cyclosome (APC/C). Recent biochemical and structural studies revealed that the human MCC binds two Cdc20 molecules, one (Cdc20M) through well-characterized, cooperative binding to Mad2 and Mad3/BubR1 (forming the "core MCC") and the other one (Cdc20A) through additional binding sequences in Mad3/BubR1 [4-6]. Here, we dissect the different functionality of these sites in vivo. We show in fission yeast that, at low Cdc20 concentrations, Cdc20M binding is sufficient for checkpoint activity and Cdc20A binding becomes dispensable. Cdc20A binding is mediated by the conserved Mad3 ABBA-KEN2-ABBA motif [7, 8], which we find additionally required for binding of the MCC to the APC/C and for MCC disassembly. Strikingly, deletion of the APC/C subunit Apc15 mimics mutations in this motif, revealing a shared function. This function of Apc15 may be masked in human cells by independent mediators of MCC-APC/C binding. Our data provide important in vivo support for the recent structure-based models and functionally dissect three elements of Cdc20 inhibition: (1) sequestration of Cdc20 in the core MCC, sufficient at low Cdc20 concentrations; (2) inhibition of a second Cdc20 through the Mad3 C terminus, independent of Mad2 binding to this Cdc20 molecule; and (3) occupancy of the APC/C with full MCC, where Mad3 and Apc15 are involved.
Collapse
|
44
|
Wang R, Burton JL, Solomon MJ. Transcriptional and post-transcriptional regulation of Cdc20 during the spindle assembly checkpoint in S. cerevisiae. Cell Signal 2017; 33:41-48. [PMID: 28189585 DOI: 10.1016/j.cellsig.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 01/26/2023]
Abstract
The anaphase-promoting complex (APC) is a ubiquitin ligase responsible for promoting the degradation of many cell cycle regulators. One of the activators and substrate-binding proteins for the APC is Cdc20. It has been shown previously that Cdc20 can promote its own degradation by the APC in normal cycling cells mainly through a cis-degradation mode (i.e. via an intramolecular mechanism). However, how Cdc20 is degraded during the spindle assembly checkpoint (SAC) is still not fully clear. In this study, we used a dual-Cdc20 system to investigate this issue and found that the cis-degradation mode is also the major pathway responsible for Cdc20 degradation during the SAC. In addition, we found that there is an inverse relationship between APCCdc20 activity and the transcriptional activity of the CDC20 promoter, which likely occurs through feedback regulation by APCCdc20 substrates, such as the cyclins Clb2 and Clb5. These findings contribute to our understanding of how the inhibition of APCCdc20 activity and enhanced Cdc20 degradation are required for proper spindle checkpoint arrest.
Collapse
Affiliation(s)
- Ruiwen Wang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China.
| | - Janet L Burton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Mark J Solomon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
45
|
Meadows JC, Lancaster TC, Buttrick GJ, Sochaj AM, Messin LJ, Del Mar Mora-Santos M, Hardwick KG, Millar JBA. Identification of a Sgo2-Dependent but Mad2-Independent Pathway Controlling Anaphase Onset in Fission Yeast. Cell Rep 2017; 18:1422-1433. [PMID: 28178520 PMCID: PMC5316559 DOI: 10.1016/j.celrep.2017.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/08/2016] [Accepted: 01/15/2017] [Indexed: 10/28/2022] Open
Abstract
The onset of anaphase is triggered by activation of the anaphase-promoting complex/cyclosome (APC/C) following silencing of the spindle assembly checkpoint (SAC). APC/C triggers ubiquitination of Securin and Cyclin B, which leads to loss of sister chromatid cohesion and inactivation of Cyclin B/Cdk1, respectively. This promotes relocalization of Aurora B kinase and other components of the chromosome passenger complex (CPC) from centromeres to the spindle midzone. In fission yeast, this is mediated by Clp1 phosphatase-dependent interaction of CPC with Klp9/MKLP2 (kinesin-6). When this interaction is disrupted, kinetochores bi-orient normally, but APC/C activation is delayed via a mechanism that requires Sgo2 and some (Bub1, Mph1/Mps1, and Mad3), but not all (Mad1 and Mad2), components of the SAC and the first, but not second, lysine, glutamic acid, glutamine (KEN) box in Mad3. These data indicate that interaction of CPC with Klp9 terminates a Sgo2-dependent, but Mad2-independent, APC/C-inhibitory pathway that is distinct from the canonical SAC.
Collapse
Affiliation(s)
- John C Meadows
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Institute of Advanced Study, University of Warwick, Coventry CV4 7AL, UK
| | - Theresa C Lancaster
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Graham J Buttrick
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Alicja M Sochaj
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Liam J Messin
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Del Mar Mora-Santos
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jonathan B A Millar
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
46
|
Corbett KD. Molecular Mechanisms of Spindle Assembly Checkpoint Activation and Silencing. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:429-455. [PMID: 28840248 DOI: 10.1007/978-3-319-58592-5_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cell division, the Spindle Assembly Checkpoint (SAC) plays a key regulatory role by monitoring the status of chromosome-microtubule attachments and allowing chromosome segregation only after all chromosomes are properly attached to spindle microtubules. While the identities of SAC components have been known, in some cases, for over two decades, the molecular mechanisms of the SAC have remained mostly mysterious until very recently. In the past few years, advances in biochemical reconstitution, structural biology, and bioinformatics have fueled an explosion in the molecular understanding of the SAC. This chapter seeks to synthesize these recent advances and place them in a biological context, in order to explain the mechanisms of SAC activation and silencing at a molecular level.
Collapse
Affiliation(s)
- Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.
- Departments of Cellular & Molecular Medicine and Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
Abstract
Chromosomal instability (CIN), the persistent inability of a cell to faithfully segregate its genome, is a feature of many cancer cells. It stands to reason that CIN enables the acquisition of multiple cancer hallmarks; however, there is a growing body of evidence suggesting that CIN impairs cellular fitness and prevents neoplastic transformation. Here, we suggest a new perspective to reconcile this apparent paradox and share an unexpected link between aneuploidy and aging that was discovered through attempts to investigate the CIN-cancer relationship. Additionally, we provide a comprehensive overview of the function and regulation of the anaphase-promoting complex, an E3 ubiquitin ligase that mediates high-fidelity chromosome segregation, and describe the mechanisms that lead to whole-chromosome gain or loss. With this review, we aim to expand our understanding of the role of CIN in cancer and aging with the long-term objective of harnessing this information for the advancement of patient care.
Collapse
Affiliation(s)
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905;
| |
Collapse
|
48
|
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)—the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.
Collapse
Affiliation(s)
- Song-Tao Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Hang Zhang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
49
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
50
|
Garvanska DH, Larsen MSY, Nilsson J. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C. Biol Open 2016; 5:1441-1448. [PMID: 27591192 PMCID: PMC5087681 DOI: 10.1242/bio.020842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) inhibits the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores by generating a diffusible inhibitor termed the mitotic checkpoint complex (MCC). At metaphase, rapid activation of the APC/C requires removal of the MCC, a process that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor contribution to SAC silencing in HCT116 cells. Strikingly, in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E2 enzyme UBE2D. In conclusion, we provide in vivo insight into the APC/C E2 module and its interplay with SAC silencing components.
Collapse
Affiliation(s)
- Dimitriya H Garvanska
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Marie Sofie Yoo Larsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|