1
|
Xiaotan Sanjie Decoction Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion through lncRNA-ATB and miR-200A. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7029182. [PMID: 36060143 PMCID: PMC9436559 DOI: 10.1155/2022/7029182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
This study is aimed at exploring whether Xiaotan Sanjie decoction (XTSJ) inhibits gastric cancer (GC) proliferation and metastasis by regulating lncRNA-ATB expression. qRT-PCR and Western blot were used to analyze lncRNA-ATB and downstream-regulated genes/proteins in human GC cells. CCK8, Edu, and flow cytometry assays were used to detect the inhibitory effect of XTSJ on cell proliferation and apoptosis. Moreover, transwell and wound healing assays were used to detect the inhibitory effect of XTSJ on migration and invasion. qRT-PCR and Western blot were used to detect regulated genes and proteins levels. The HGC-27 cell line was used for follow-up analysis due to the high level of lncRNA-ATB and cell characteristics. XTSJ inhibited the proliferation and metastasis of HGC-27 in a dose-dependent manner. Further research found that XTSJ downregulated lncRNA-ATB, Vimentin, and N-cadherin, while it upregulated miR-200a and E-cadherin in a dose-dependent manner. XTSJ also upregulated Caspase 3, Caspase 9, Bax, and downregulated Bcl-2. Furthermore, XTSJ inhibited tumor growth in vivo and downregulated EMT signaling pathways. These results indicate that XTSJ may affect EMT and Bcl-2 signaling pathways by regulating lncRNA-ATB and miR-200a, thus inhibiting proliferation, migration, and invasion of HGC-27 cells. Therefore, XTSJ may be an effective treatment for the high levels of lncRNA-ATB in GC.
Collapse
|
2
|
Ribosome-Associated ncRNAs (rancRNAs) Adjust Translation and Shape Proteomes. Noncoding RNA 2022; 8:ncrna8020022. [PMID: 35314615 PMCID: PMC8938821 DOI: 10.3390/ncrna8020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
The regulation of protein synthesis is of extreme importance for cell survival in challenging environmental conditions. Modulating gene expression at the level of translation allows a swift and low-energy-cost response to external stimuli. In the last decade, an emerging class of regulatory ncRNAs, namely ribosome-associated non-coding RNAs (rancRNAs), has been discovered. These rancRNAs have proven to be efficient players in the regulation of translation as a first wave of stress adaptation by directly targeting the ribosome, the central enzyme of protein production. This underlying principle appears to be highly conserved, since rancRNAs are present in all three domains of life. Here, we review the major findings and mechanistic peculiarities of rancRNAs, a class of transcripts that is providing new and broader perspectives on the complexity of the ribosome and translation regulation.
Collapse
|
3
|
Reuther J, Schneider L, Iacovache I, Pircher A, Gharib WH, Zuber B, Polacek N. A small ribosome-associated ncRNA globally inhibits translation by restricting ribosome dynamics. RNA Biol 2021; 18:2617-2632. [PMID: 34121604 PMCID: PMC8632108 DOI: 10.1080/15476286.2021.1935573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribosome-associated non-coding RNAs (rancRNAs) have been recognized as an emerging class of regulatory molecules capable of fine-tuning translation in all domains of life. RancRNAs are ideally suited for allowing a swift response to changing environments and are therefore considered pivotal during the first wave of stress adaptation. Previously, we identified an mRNA-derived 18 nucleotides long rancRNA (rancRNA_18) in Saccharomyces cerevisiae that rapidly downregulates protein synthesis during hyperosmotic stress. However, the molecular mechanism of action remained enigmatic. Here, we combine biochemical, genetic, transcriptome-wide and structural evidence, thus revealing rancRNA_18 as global translation inhibitor by targeting the E-site region of the large ribosomal subunit. Ribosomes carrying rancRNA_18 possess decreased affinity for A-site tRNA and impaired structural dynamics. Cumulatively, these discoveries reveal the mode of action of a rancRNA involved in modulating protein biosynthesis at a thus far unequalled precision.
Collapse
Affiliation(s)
- Julia Reuther
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Lukas Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Andreas Pircher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Walid H Gharib
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Mignone P, Pio G, D'Elia D, Ceci M. Exploiting transfer learning for the reconstruction of the human gene regulatory network. Bioinformatics 2020; 36:1553-1561. [PMID: 31608946 DOI: 10.1093/bioinformatics/btz781] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/13/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023] Open
Abstract
MOTIVATION The reconstruction of gene regulatory networks (GRNs) from gene expression data has received increasing attention in recent years, due to its usefulness in the understanding of regulatory mechanisms involved in human diseases. Most of the existing methods reconstruct the network through machine learning approaches, by analyzing known examples of interactions. However, (i) they often produce poor results when the amount of labeled examples is limited, or when no negative example is available and (ii) they are not able to exploit information extracted from GRNs of other (better studied) related organisms, when this information is available. RESULTS In this paper, we propose a novel machine learning method that overcomes these limitations, by exploiting the knowledge about the GRN of a source organism for the reconstruction of the GRN of the target organism, by means of a novel transfer learning technique. Moreover, the proposed method is natively able to work in the positive-unlabeled setting, where no negative example is available, by fruitfully exploiting a (possibly large) set of unlabeled examples. In our experiments, we reconstructed the human GRN, by exploiting the knowledge of the GRN of Mus musculus. Results showed that the proposed method outperforms state-of-the-art approaches and identifies previously unknown functional relationships among the analyzed genes. AVAILABILITY AND IMPLEMENTATION http://www.di.uniba.it/∼mignone/systems/biosfer/index.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Paolo Mignone
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,National Interuniversity Consortium for Informatics (CINI), Roma 00185, Italy
| | - Gianvito Pio
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,National Interuniversity Consortium for Informatics (CINI), Roma 00185, Italy
| | - Domenica D'Elia
- Institute for Biomedical Technologies, CNR, Institute for Biomedical Technologies, Bari 70126, Italy
| | - Michelangelo Ceci
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,National Interuniversity Consortium for Informatics (CINI), Roma 00185, Italy.,Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| |
Collapse
|
5
|
Sun B, Liu C, Li H, Zhang L, Luo G, Liang S, Lü M. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett 2019; 19:595-605. [PMID: 31897175 PMCID: PMC6923957 DOI: 10.3892/ol.2019.11182] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous types of molecular mechanisms mediate the development of cancer. Non-coding RNAs (ncRNAs) are being increasingly recognized to play important role in mediating the development of diseases, including cancer. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are the two most widely studied ncRNAs. Thus far, lncRNAs are known to have biological roles through a variety of mechanisms, including genetic imprinting, chromatin remodeling, cell cycle control, splicing regulation, mRNA decay and translational regulation, and miRNAs regulate gene expression through the degradation of mRNAs and lncRNAs. Although ncRNAs account for a major proportion of the total RNA, the mechanisms underlying the physiological or pathological processes mediated by various types of ncRNAs, and the specific interaction mechanisms between miRNAs and lncRNAs in various physiological and pathological processes, remain largely unknown. Thus, further research in this field is required. In general, the interaction mechanisms between miRNAs and lncRNAs in human cancer have become important research topics, and the study thereof has led to the recent development of related technologies. By providing examples and descriptions, and performing chart analysis, the present study aimed to review the interaction mechanisms and research approaches for these two types of ncRNAs, as well as their roles in the occurrence and development of cancer. These details have far-reaching significance for the utilization of these molecules in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Binyu Sun
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxia Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hao Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
6
|
Yuan D, Zhang X, Zhao Y, Qian H, Wang H, He C, Liu X, Guo T, Lin M, Yu H, Ye J. Role of lncRNA-ATB in ovarian cancer and its mechanisms of action. Exp Ther Med 2019; 19:965-971. [PMID: 32010258 PMCID: PMC6966129 DOI: 10.3892/etm.2019.8282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
This study aimed to elucidate the role of long non-coding RNA activated by transforming growth factor-β (lncRNA-ATB) in ovarian cancer and its underlying mechanisms of action. Expression levels of lncRNA-ATB in ovarian cancer cell line SKOV3 and in a healthy human ovarian cell line were compared using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results indicated that lncRNA-ATB was expressed at significantly higher levels in SKOV3 cells compared with the healthy cell line. After downregulation of lncRNA-ATB expression in SKOV3 cells using lncRNA-ATB-short hairpin RNA, cell proliferation, apoptosis, invasion and migration were assessed using Cell counting kit-8, Live Dead staining, Transwell assay and wound healing assay, respectively. RT-qPCR and western blotting were used to quantify the expression of signal transducer and activator of transcription 3 (STAT3), phosphorylated (p)-STAT3, and the additional epithelial to mesenchymal transition (EMT)-related proteins E-cadherin and vimentin in SKOV3 cells. LncRNA-ATB downregulation significantly reduced SKOV3 cell proliferation, invasion and migration, promoted apoptosis, decreased the expression of p-STAT3 and vimentin, and increased E-cadherin expression. Taken together, these results suggest that lncRNA-ATB downregulation can inhibit ovarian cancer cell proliferation, invasion and migration, and promote cell apoptosis. Lnc-RNA-ATB may therefore be a new target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Gynaecology and Obstetrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaofang Zhang
- Department of Pathology, Jiangxi Provincial Tumor Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Yinling Zhao
- Department of Gynaecology and Obstetrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Hua Qian
- Department of Gynaecology and Obstetrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Hezhu Wang
- Department of Gynaecology and Obstetrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Cuiqin He
- Department of Gynaecology and Obstetrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xia Liu
- Department of Gynaecology and Obstetrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Ting Guo
- Translational Medicine Center, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Mei Lin
- Translational Medicine Center, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Hong Yu
- Translational Medicine Center, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jun Ye
- Translational Medicine Center, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
7
|
Wilczynska A, Gillen SL, Schmidt T, Meijer HA, Jukes-Jones R, Langlais C, Kopra K, Lu WT, Godfrey JD, Hawley BR, Hodge K, Zanivan S, Cain K, Le Quesne J, Bushell M. eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR. Genome Biol 2019; 20:262. [PMID: 31791371 PMCID: PMC6886185 DOI: 10.1186/s13059-019-1857-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. RESULTS Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5'UTR of target mRNAs directly upstream of the AUG start codon. CONCLUSIONS Our data support a model whereby purine motifs towards the 3' end of the 5'UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding.
Collapse
Affiliation(s)
- Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Hedda A Meijer
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | - Kari Kopra
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Department of Chemistry, University of Turku, Vatselankatu 2, FI-20500, Turku, Finland
| | - Wei-Ting Lu
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Jack D Godfrey
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kelvin Cain
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - John Le Quesne
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Dehé PM, Gaillard PHL. Control of structure-specific endonucleases to maintain genome stability. Nat Rev Mol Cell Biol 2017; 18:315-330. [PMID: 28327556 DOI: 10.1038/nrm.2016.177] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-specific endonucleases (SSEs) have key roles in DNA replication, recombination and repair, and emerging roles in transcription. These enzymes have specificity for DNA secondary structure rather than for sequence, and therefore their activity must be precisely controlled to ensure genome stability. In this Review, we discuss how SSEs are controlled as part of genome maintenance pathways in eukaryotes, with an emphasis on the elaborate mechanisms that regulate the members of the major SSE families - including the xeroderma pigmentosum group F-complementing protein (XPF) and MMS and UV-sensitive protein 81 (MUS81)-dependent nucleases, and the flap endonuclease 1 (FEN1), XPG and XPG-like endonuclease 1 (GEN1) enzymes - during processes such as DNA adduct repair, Holliday junction processing and replication stress. We also discuss newly characterized connections between SSEs and other classes of DNA-remodelling enzymes and cell cycle control machineries, which reveal the importance of SSE scaffolds such as the synthetic lethal of unknown function 4 (SLX4) tumour suppressor for the maintenance of genome stability.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| | - Pierre-Henri L Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
9
|
Abstract
Accumulating recent evidence identified the ribosome as binding target for numerous small and long non-protein-coding RNAs (ncRNAs) in various organisms of all 3 domains of life. Therefore it appears that ribosome-associated ncRNAs (rancRNAs) are a prevalent, yet poorly understood class of cellular transcripts. Since rancRNAs are associated with the arguable most central enzyme of the cell it seems plausible to propose a role in translation control. Indeed first experimental evidence on small rancRNAs has been presented, linking ribosome association with fine-tuning the rate of protein biosynthesis in a stress-dependent manner.
Collapse
Affiliation(s)
- Andreas Pircher
- a Department of Chemistry and Biochemistry ; University of Bern ; Bern , Switzerland
| | | | | |
Collapse
|
10
|
Fong N, Kim H, Zhou Y, Ji X, Qiu J, Saldi T, Diener K, Jones K, Fu XD, Bentley DL. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev 2015; 28:2663-76. [PMID: 25452276 PMCID: PMC4248296 DOI: 10.1101/gad.252106.114] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fong et al. examined cotranscriptional pre-mRNA splicing using RNA polymerase II mutants that change average elongation rates genome-wide. Slow and fast elongation affected constitutive and alternative splicing and often both increased or both decreased inclusion of a particular exon or retained intron. These results suggest that an optimal rate of transcriptional elongation is required for normal cotranscriptional pre-mRNA splicing. Alternative splicing modulates expression of most human genes. The kinetic model of cotranscriptional splicing suggests that slow elongation expands and that fast elongation compresses the “window of opportunity” for recognition of upstream splice sites, thereby increasing or decreasing inclusion of alternative exons. We tested the model using RNA polymerase II mutants that change average elongation rates genome-wide. Slow and fast elongation affected constitutive and alternative splicing, frequently altering exon inclusion and intron retention in ways not predicted by the model. Cassette exons included by slow and excluded by fast elongation (type I) have weaker splice sites, shorter flanking introns, and distinct sequence motifs relative to “slow-excluded” and “fast-included” exons (type II). Many rate-sensitive exons are misspliced in tumors. Unexpectedly, slow and fast elongation often both increased or both decreased inclusion of a particular exon or retained intron. These results suggest that an optimal rate of transcriptional elongation is required for normal cotranscriptional pre-mRNA splicing.
Collapse
Affiliation(s)
- Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hyunmin Kim
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Xiong Ji
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Katrina Diener
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ken Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California at San Diego, San Diego, California 92093, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| |
Collapse
|