1
|
Chiolo I, Altmeyer M, Legube G, Mekhail K. Nuclear and genome dynamics underlying DNA double-strand break repair. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00828-1. [PMID: 40097581 DOI: 10.1038/s41580-025-00828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Changes in nuclear shape and in the spatial organization of chromosomes in the nucleus commonly occur in cancer, ageing and other clinical contexts that are characterized by increased DNA damage. However, the relationship between nuclear architecture, genome organization, chromosome stability and health remains poorly defined. Studies exploring the connections between the positioning and mobility of damaged DNA relative to various nuclear structures and genomic loci have revealed nuclear and cytoplasmic processes that affect chromosome stability. In this Review, we discuss the dynamic mechanisms that regulate nuclear and genome organization to promote DNA double-strand break (DSB) repair, genome stability and cell survival. Genome dynamics that support DSB repair rely on chromatin states, repair-protein condensates, nuclear or cytoplasmic microtubules and actin filaments, kinesin or myosin motor proteins, the nuclear envelope, various nuclear compartments, chromosome topology, chromatin loop extrusion and diverse signalling cues. These processes are commonly altered in cancer and during natural or premature ageing. Indeed, the reshaping of the genome in nuclear space during DSB repair points to new avenues for therapeutic interventions that may take advantage of new cancer cell vulnerabilities or aim to reverse age-associated defects.
Collapse
Affiliation(s)
- Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland.
| | - Gaëlle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Gong P, Guo Z, Wang S, Gao S, Cao Q. Histone Phosphorylation in DNA Damage Response. Int J Mol Sci 2025; 26:2405. [PMID: 40141048 PMCID: PMC11941871 DOI: 10.3390/ijms26062405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The DNA damage response (DDR) is crucial for maintaining genomic stability and preventing the accumulation of mutations that can lead to various diseases, including cancer. The DDR is a complex cellular regulatory network that involves DNA damage sensing, signal transduction, repair, and cell cycle arrest. Modifications in histone phosphorylation play important roles in these processes, facilitating DNA repair factor recruitment, damage signal transduction, chromatin remodeling, and cell cycle regulation. The precise regulation of histone phosphorylation is critical for the effective repair of DNA damage, genomic integrity maintenance, and the prevention of diseases such as cancer, where DNA repair mechanisms are often compromised. Thus, understanding histone phosphorylation in the DDR provides insights into DDR mechanisms and offers potential therapeutic targets for diseases associated with genomic instability, including cancers.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shufeng Gao
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Qinhong Cao
- College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| |
Collapse
|
3
|
Chakraborty S, Strachan J, Schirmeisen K, Besse L, Mercier E, Fréon K, Zhang H, Zhao N, Bayne EH, Lambert SAE. The fission yeast SUMO-targeted ubiquitin ligase Slx8 functionally associates with clustered centromeres and the silent mating-type region at the nuclear periphery. Biol Open 2024; 13:bio061746. [PMID: 39786922 PMCID: PMC11708773 DOI: 10.1242/bio.061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates. In order to study the dynamic dialectic between ubiquitinylation and SUMOylation in the nuclear space of the S. pombe genome, we analyzed Slx8 localization. Unexpectedly, we did not detect replication stress-induced Slx8 foci. However, we discovered that Slx8 forms a single nuclear focus, enriched at the nuclear periphery, which marks both clustered centromeres at the spindle pole body and the silent mating-type region. The formation of this single Slx8 focus requires the E3 SUMO ligase Pli1, poly-SUMOylation and the histone methyl transferase Clr4 that is responsible for the heterochromatin histone mark H3-K9 methylation. Finally, we established that Slx8 promotes centromere clustering and gene silencing at heterochromatin domains. Altogether, our data highlight evolutionarily conserved and functional relationships between STUbL and heterochromatin domains to promote gene silencing and nuclear organization.
Collapse
Affiliation(s)
- Shrena Chakraborty
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Joanna Strachan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Kamila Schirmeisen
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Eve Mercier
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Karine Fréon
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Haidao Zhang
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Ning Zhao
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Elizabeth H. Bayne
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Sarah A. E. Lambert
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
- Equipe Labélisée Ligue Nationale Contre le Cancer, 91400 Orsay, France
| |
Collapse
|
4
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
5
|
Gaillard H, Ciudad T, Aguilera A, Wellinger RE. Histone variant H2A.Z is needed for efficient transcription-coupled NER and genome integrity in UV challenged yeast cells. PLoS Genet 2024; 20:e1011300. [PMID: 39255275 PMCID: PMC11414981 DOI: 10.1371/journal.pgen.1011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
The genome of living cells is constantly challenged by DNA lesions that interfere with cellular processes such as transcription and replication. A manifold of mechanisms act in concert to ensure adequate DNA repair, gene expression, and genome stability. Bulky DNA lesions, such as those induced by UV light or the DNA-damaging agent 4-nitroquinoline oxide, act as transcriptional and replicational roadblocks and thus represent a major threat to cell metabolism. When located on the transcribed strand of active genes, these lesions are handled by transcription-coupled nucleotide excision repair (TC-NER), a yet incompletely understood NER sub-pathway. Here, using a genetic screen in the yeast Saccharomyces cerevisiae, we identified histone variant H2A.Z as an important component to safeguard transcription and DNA integrity following UV irradiation. In the absence of H2A.Z, repair by TC-NER is severely impaired and RNA polymerase II clearance reduced, leading to an increase in double-strand breaks. Thus, H2A.Z is needed for proficient TC-NER and plays a major role in the maintenance of genome stability upon UV irradiation.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Toni Ciudad
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Ralf E. Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Li J, Xiong N, West K, Leung M, Ching Y, Huang J, Yuan J, Yu CH, Leung J, Huen M. Nuclear F-actin assembly on damaged chromatin is regulated by DYRK1A and Spir1 phosphorylation. Nucleic Acids Res 2024; 52:8897-8912. [PMID: 38966995 PMCID: PMC11347173 DOI: 10.1093/nar/gkae574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.
Collapse
Affiliation(s)
- Junshi Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Nan Xiong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Kirk L West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Manton Leung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Yick Pang Ching
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Cheng-Han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Justin Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| |
Collapse
|
7
|
Song H, Bae Y, Kim S, Deascanis D, Lee Y, Rona G, Lane E, Lee S, Kim S, Pagano M, Myung K, Kee Y. Nucleoporins cooperate with Polycomb silencers to promote transcriptional repression and repair at DNA double strand breaks. RESEARCH SQUARE 2024:rs.3.rs-4680344. [PMID: 39070640 PMCID: PMC11276006 DOI: 10.21203/rs.3.rs-4680344/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DNA Double-strand breaks (DSBs) are harmful lesions and major sources of genomic instability. Studies have suggested that DSBs induce local transcriptional silencing that consequently promotes genomic stability. Several factors have been proposed to actively participate in this process, including ATM and Polycomb repressive complex 1 (PRC1). Here we found that disrupting PRC1 clustering disrupts DSB-induced gene silencing. Interactome analysis of PHC2, a PRC1 subunit that promotes the formation of the Polycomb body, found several nucleoporins that constitute the Nuclear Pore Complex (NPC). Similar to PHC2, depleting the nucleoporins also disrupted the DSB-induced gene silencing. We found that some of these nucleoporins, such as NUP107 and NUP43, which are members of the Y-complex of NPC, localize to DSB sites. These nucleoporin-enriched DSBs were distant from the nuclear periphery. The presence of nucleoporins and PHC2 at DSB regions were inter-dependent, suggesting that they act cooperatively in the DSB-induced gene silencing. We further found two structural components within NUP107 to be necessary for the transcriptional repression at DSBs: ATM/ATR-mediated phosphorylation at Serine37 residue within the N-terminal disordered tail, and the NUP133-binding surface at the C-terminus. These results provide a new functional interplay among nucleoporins, ATM and the Polycomb proteins in the DSB metabolism, and underscore their emerging roles in genome stability maintenance. *Hongseon Song, Yubin Bae, Sangin Kim, and Dante Deascanis contributed equally to this work.
Collapse
|
8
|
Meschichi A, Rosa S. Plant chromatin on the move: an overview of chromatin mobility during transcription and DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:953-962. [PMID: 36811211 DOI: 10.1111/tpj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It has become increasingly clear in recent years that chromosomes are highly dynamic entities. Chromatin mobility and re-arrangement are involved in many biological processes, including gene regulation and the maintenance of genome stability. Despite extensive studies on chromatin mobility in yeast and animal systems, up until recently, not much had been investigated at this level in plants. For plants to achieve proper growth and development, they need to respond rapidly and appropriately to environmental stimuli. Therefore, understanding how chromatin mobility can support plant responses may offer profound insights into the functioning of plant genomes. In this review, we discuss the state of the art related to chromatin mobility in plants, including the available technologies for their role in various cellular processes.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| |
Collapse
|
9
|
Simon MN, Dubrana K, Palancade B. On the edge: how nuclear pore complexes rule genome stability. Curr Opin Genet Dev 2024; 84:102150. [PMID: 38215626 DOI: 10.1016/j.gde.2023.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Nuclear organization has emerged as a critical layer in the coordination of DNA repair activities. Distinct types of DNA lesions have notably been shown to relocate at the vicinity of nuclear pore complexes (NPCs), where specific repair pathways are favored, ultimately safeguarding genome integrity. Here, we review the most recent progress in this field, notably highlighting the increasingly diverse types of DNA structures undergoing repositioning, and the signaling pathways involved. We further discuss our growing knowledge of the molecular mechanisms underlying the choice of repair pathways at NPCs, and their conservation - or divergences. Intriguingly, a series of recent findings suggest that DNA metabolism may be coupled to NPC biogenesis and specialization, challenging our initial vision of these processes.
Collapse
Affiliation(s)
- Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe Labélisée Ligue, Aix Marseille University, Marseille, France. https://twitter.com/@IJMonod
| | - Karine Dubrana
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France. https://twitter.com/@DubranaLab
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
| |
Collapse
|
10
|
González-Acosta D, Lopes M. DNA replication and replication stress response in the context of nuclear architecture. Chromosoma 2024; 133:57-75. [PMID: 38055079 PMCID: PMC10904558 DOI: 10.1007/s00412-023-00813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.
Collapse
Affiliation(s)
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Gasser SM, Stutz F. SUMO in the regulation of DNA repair and transcription at nuclear pores. FEBS Lett 2023; 597:2833-2850. [PMID: 37805446 DOI: 10.1002/1873-3468.14751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.
Collapse
Affiliation(s)
- Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Switzerland
| |
Collapse
|
12
|
Chen B, Ge T, Jian M, Chen L, Fang Z, He Z, Huang C, An Y, Yin S, Xiong Y, Zhang J, Li R, Ye M, Li Y, Liu F, Ma W, Songyang Z. Transmembrane nuclease NUMEN/ENDOD1 regulates DNA repair pathway choice at the nuclear periphery. Nat Cell Biol 2023:10.1038/s41556-023-01165-1. [PMID: 37322289 DOI: 10.1038/s41556-023-01165-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Proper repair of DNA damage lesions is essential to maintaining genome integrity and preventing the development of human diseases, including cancer. Increasing evidence suggests the importance of the nuclear envelope in the spatial regulation of DNA repair, although the mechanisms of such regulatory processes remain poorly defined. Through a genome-wide synthetic viability screen for PARP-inhibitor resistance using an inducible CRISPR-Cas9 platform and BRCA1-deficient breast cancer cells, we identified a transmembrane nuclease (renamed NUMEN) that could facilitate compartmentalized and non-homologous end joining-dependent repair of double-stranded DNA breaks at the nuclear periphery. Collectively, our data demonstrate that NUMEN generates short 5' overhangs through its endonuclease and 3'→5' exonuclease activities, promotes the repair of DNA lesions-including heterochromatic lamina-associated domain breaks as well as deprotected telomeres-and functions as a downstream effector of DNA-dependent protein kinase catalytic subunit. These findings underline the role of NUMEN as a key player in DNA repair pathway choice and genome-stability maintenance, and have implications for ongoing research into the development and treatment of genome instability disorders.
Collapse
Affiliation(s)
- Bohong Chen
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Ge
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meiqi Jian
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liutao Chen
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengwen Fang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengjing Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan An
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Xiong
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - JingKai Zhang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubing Li
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbing Ma
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Ferdous MA, Islam SI, Habib N, Almehmadi M, Allahyani M, Alsaiari AA, Shafie A. CRISPR-Cas Genome Editing Technique for Fish Disease Management: Current Study and Future Perspective. Microorganisms 2022; 10:2012. [PMID: 36296288 PMCID: PMC9610719 DOI: 10.3390/microorganisms10102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Scientists have discovered many ways to treat bacteria, viruses, and parasites in aquaculture; however, there is still an impossibility in finding a permanent solution for all types of diseases. In that case, the CRISPR-Cas genome-editing technique can be the potential solution to preventing diseases for aquaculture sustainability. CRISPR-Cas is cheaper, easier, and more precise than the other existing genome-editing technologies and can be used as a new disease treatment tool to solve the far-reaching challenges in aquaculture. This technique may now be employed in novel ways, such as modifying a single nucleotide base or tagging a location in the DNA with a fluorescent protein. This review paper provides an informative discussion on adopting CRISPR technology in aquaculture disease management. Starting with the basic knowledge of CRISPR technology and phages, this study highlights the development of RNA-guided immunity to combat the Chilodonella protozoan group and nervous necrosis virus (NNV) in marine finfish. Additionally, we highlight the immunological application of CRISPR-Cas against bacterial diseases in channel catfish and the white spot syndrome virus (WSSV) in shrimp. In addition, the review summarizes a synthesis of bioinformatics tools used for CRISPR-Cas sgRNA design, and acceptable solutions are discussed, considering the limitations.
Collapse
Affiliation(s)
- Md. Akib Ferdous
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasim Habib
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
14
|
Kumar M, Hasan M, Choyal P, Tomar M, Gupta OP, Sasi M, Changan S, Lorenzo JM, Singh S, Sampathrajan V, Dhumal S, Pandiselvam R, Sharma K, Satankar V, Waghmare R, Senapathy M, Sayed AA, Radha, Dey A, Amarowicz R, Kennedy JF. Cottonseed feedstock as a source of plant-based protein and bioactive peptides: Evidence based on biofunctionalities and industrial applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Mojumdar A, Mair N, Adam N, Cobb JA. Changes in DNA double-strand break repair during aging correlate with an increase in genomic mutations. J Mol Biol 2022; 434:167798. [PMID: 35998703 DOI: 10.1016/j.jmb.2022.167798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
A double -strand break (DSB) is one of the most deleterious forms of DNA damage. In eukaryotic cells, two main repair pathways have evolved to repair DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is the predominant pathway of repair in the unicellular eukaryotic organism, S. cerevisiae. However, during replicative aging the relative use of HR and NHEJ shifts in favor of end-joining repair. By monitoring repair events in the HO-DSB system, we find that early in replicative aging there is a decrease in the association of long-range resection factors, Dna2-Sgs1 and Exo1 at the break site and a decrease in DNA resection. Subsequently, as aging progressed, the recovery of Ku70 at DSBs decreased and the break site associated with the nuclear pore complex at the nuclear periphery, which is the location where DSB repair occurs through alternative pathways that are more mutagenic. End-bridging remained intact as HR and NHEJ declined, but eventually it too became disrupted in cells at advanced replicative age. In all, our work provides insight into the molecular changes in DSB repair pathway during replicative aging. HR first declined, resulting in a transient increase in the NHEJ. However, with increased cellular divisions, Ku70 recovery at DSBs and NHEJ subsequently declined. In wild type cells of advanced replicative age, there was a high frequency of repair products with genomic deletions and microhomologies at the break junction, events not observed in young cells which repaired primarily by HR.
Collapse
Affiliation(s)
- Aditya Mojumdar
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Nicola Mair
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nancy Adam
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
16
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
17
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
18
|
Kim SM, Forsburg SL. Determinants of RPA megafoci localization to the nuclear periphery in response to replication stress. G3 (BETHESDA, MD.) 2022; 12:jkac116. [PMID: 35567482 PMCID: PMC9258583 DOI: 10.1093/g3journal/jkac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Upon replication stress, ssDNA, coated by the ssDNA-binding protein RPA, accumulates and generates a signal to activate the replication stress response. Severe replication stress induced by the loss of minichromosome maintenance helicase subunit Mcm4 in the temperature-sensitive Schizosaccharomyces pombe degron mutant (mcm4-dg) results in the formation of a large RPA focus that is translocated to the nuclear periphery. We show that resection and repair processes and chromatin remodeler Swr1/Ino80 are involved in the large RPA foci formation and its relocalization to nuclear periphery. This concentrated accumulation of RPA increases the recruitment of Cds1 to chromatin and results in an aberrant cell cycle that lacks MBF-mediated G1/S accumulation of Tos4. These findings reveal a distinct replication stress response mediated by localized accumulation of RPA that allows the evasion of cell cycle arrest.
Collapse
Affiliation(s)
- Seong Min Kim
- Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Susan L Forsburg
- Corresponding author: Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
19
|
Lashgari A, Kougnassoukou Tchara PE, Lambert JP, Côté J. New insights into the DNA repair pathway choice with NuA4/TIP60. DNA Repair (Amst) 2022; 113:103315. [PMID: 35278769 DOI: 10.1016/j.dnarep.2022.103315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In eukaryotic cells, DNA double-strand breaks (DSBs) can be repaired through two main pathways, non-homologous end-joining (NHEJ) or homologous recombination (HR). The selection of the repair pathway choice is governed by an antagonistic relationship between repair factors specific to each pathway, in a cell cycle-dependent manner. The molecular mechanisms of this decision implicate post-translational modifications of chromatin surrounding the break. Here, we discuss the recent advances regarding the function of the NuA4/TIP60 histone acetyltransferase/chromatin remodeling complex during DSBs repair. In particular, we emphasise the contribution of NuA4/TIP60 in repair pathway choice, in collaboration with the SAGA acetyltransferase complex, and how they regulate chromatin dynamics, modify non-histone substrates to allow DNA end resection and recombination.
Collapse
Affiliation(s)
- Anahita Lashgari
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Jean-Philippe Lambert
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada.
| |
Collapse
|
20
|
Nakahata S, Komoto T, Fujii M, Awazu A. Mathematical model of chromosomal dynamics during DNA double strand break repair in budding yeast. Biophys Physicobiol 2022; 19:1-12. [PMID: 35749629 PMCID: PMC9160732 DOI: 10.2142/biophysico.bppb-v19.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
During the repair of double-strand breaks (DSBs) in DNA, active mobilizations for conformational changes in chromosomes have been widely observed in eukaryotes, from yeast to animal and plant cells. DSB-damaged loci in the yeast genome showed increased mobility and relocation to the nuclear periphery. However, the driving forces behind DSB-induced chromatin dynamics remain unclear. In this study, mathematical models of normal and DSB-damaged yeast chromosomes were developed to simulate their structural dynamics. The effects of histone degradation in the whole nucleus and the change in the physical properties of damaged loci due to the binding of SUMOylated repair proteins were considered in the model of DSB-induced chromosomes based on recent experimental results. The simulation results reproduced DSB-induced changes to structural and dynamical features by which the combination of whole nuclear histone degradation and the rigid structure formation of repair protein accumulations on damaged loci were suggested to be primary contributors to the process by which damaged loci are relocated to the nuclear periphery.
Collapse
Affiliation(s)
- Shinjiro Nakahata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tetsushi Komoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
21
|
Aguilera P, Dubarry M, Hardy J, Lisby M, Simon MN, Géli V. Telomeric C-circles localize at nuclear pore complexes in Saccharomyces cerevisiae. EMBO J 2022; 41:e108736. [PMID: 35147992 PMCID: PMC8922269 DOI: 10.15252/embj.2021108736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
As in human cells, yeast telomeres can be maintained in cells lacking telomerase activity by recombination-based mechanisms known as ALT (Alternative Lengthening of Telomeres). A hallmark of ALT human cancer cells are extrachromosomal telomeric DNA elements called C-circles, whose origin and function have remained unclear. Here, we show that extrachromosomal telomeric C-circles in yeast can be detected shortly after senescence crisis and concomitantly with the production of survivors arising from "type II" recombination events. We uncover that C-circles bind to the nuclear pore complex (NPC) and to the SAGA-TREX2 complex, similar to other non-centromeric episomal DNA. Disrupting the integrity of the SAGA/TREX2 complex affects both C-circle binding to NPCs and type II telomere recombination, suggesting that NPC tethering of C-circles facilitates formation and/or propagation of the long telomere repeats characteristic of type II survivors. Furthermore, we find that disruption of the nuclear diffusion barrier impairs type II recombination. These results support a model in which concentration of C-circles at NPCs benefits type II telomere recombination, highlighting the importance of spatial coordination in ALT-type mechanisms of telomere maintenance.
Collapse
Affiliation(s)
- Paula Aguilera
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe labellisée Ligue, Aix Marseille University, Marseille, France
| | - Marion Dubarry
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe labellisée Ligue, Aix Marseille University, Marseille, France
| | - Julien Hardy
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe labellisée Ligue, Aix Marseille University, Marseille, France
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe labellisée Ligue, Aix Marseille University, Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe labellisée Ligue, Aix Marseille University, Marseille, France
| |
Collapse
|
22
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
23
|
García Fernández F, Fabre E. The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks. Genes (Basel) 2022; 13:genes13020215. [PMID: 35205260 PMCID: PMC8872016 DOI: 10.3390/genes13020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The primary functions of the eukaryotic nucleus as a site for the storage, retrieval, and replication of information require a highly dynamic chromatin organization, which can be affected by the presence of DNA damage. In response to double-strand breaks (DSBs), the mobility of chromatin at the break site is severely affected and, to a lesser extent, that of other chromosomes. The how and why of such movement has been widely studied over the last two decades, leading to different mechanistic models and proposed potential roles underlying both local and global mobility. Here, we review the state of the knowledge on current issues affecting chromatin mobility upon DSBs, and highlight its role as a crucial step in the DNA damage response (DDR).
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut Curie, CNRS UMR3664, Sorbonne Université, F-75005 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| | - Emmanuelle Fabre
- Génomes Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Université de Paris, F-75010 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| |
Collapse
|
24
|
Wootton J, Soutoglou E. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Front Genet 2022; 12:773426. [PMID: 34970302 PMCID: PMC8712883 DOI: 10.3389/fgene.2021.773426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.
Collapse
Affiliation(s)
- Jack Wootton
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
25
|
Kitagawa S, Kusakabe M, Takahashi D, Narimiya T, Nakabayashi Y, Seki M, Horigome C, Harata M. Analysis of the molecular evolution of histone variant H2A.Z using a linker-mediated complex strategy and yeast genetic complementation. Biosci Biotechnol Biochem 2021; 86:104-108. [PMID: 34718407 DOI: 10.1093/bbb/zbab190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022]
Abstract
The histone variant H2A.Z is deposited into chromatin by specific machinery and is required for genome functions. Using a linker-mediated complex strategy combined with yeast genetic complementation, we demonstrate evolutionary conservation of H2A.Z together with its chromatin incorporation and functions. This approach is applicable to the evolutionary analyses of proteins that form complexes with interactors.
Collapse
Affiliation(s)
- Saho Kitagawa
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Kusakabe
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Takahashi
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Takumi Narimiya
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Yu Nakabayashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Seki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Chihiro Horigome
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masahiko Harata
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
SUMO-Based Regulation of Nuclear Positioning to Spatially Regulate Homologous Recombination Activities at Replication Stress Sites. Genes (Basel) 2021; 12:genes12122010. [PMID: 34946958 PMCID: PMC8701742 DOI: 10.3390/genes12122010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
DNA lesions have properties that allow them to escape their nuclear compartment to achieve DNA repair in another one. Recent studies uncovered that the replication fork, when its progression is impaired, exhibits increased mobility when changing nuclear positioning and anchors to nuclear pore complexes, where specific types of homologous recombination pathways take place. In yeast models, increasing evidence points out that nuclear positioning is regulated by small ubiquitin-like modifier (SUMO) metabolism, which is pivotal to maintaining genome integrity at sites of replication stress. Here, we review how SUMO-based pathways are instrumental to spatially segregate the subsequent steps of homologous recombination during replication fork restart. In particular, we discussed how routing towards nuclear pore complex anchorage allows distinct homologous recombination pathways to take place at halted replication forks.
Collapse
|
27
|
Hurst V, Challa K, Jonas F, Forey R, Sack R, Seebacher J, Schmid CD, Barkai N, Shimada K, Gasser SM, Poli J. A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress. EMBO J 2021; 40:e108439. [PMID: 34569643 PMCID: PMC8561635 DOI: 10.15252/embj.2021108439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Felix Jonas
- Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christoph D Schmid
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Naama Barkai
- Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| |
Collapse
|
28
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA double-strand breaks (DSBs) are the most deleterious form of DNA damage and are repaired through non-homologous end-joining (NHEJ) or homologous recombination (HR). Repair initiation, regulation and communication with signaling pathways require several histone-modifying and chromatin-remodeling complexes. In budding yeast, this involves three primary complexes: INO80-C, which is primarily associated with HR, SWR1-C, which promotes NHEJ, and RSC-C, which is involved in both pathways as well as the general DNA damage response. Here we identify ARP6 as a factor involved in DSB repair through an RSC-C-related pathway. The loss of ARP6 significantly reduces the NHEJ repair efficiency of linearized plasmids with cohesive ends, impairs the repair of chromosomal breaks, and sensitizes cells to DNA-damaging agents. Genetic interaction analysis indicates that ARP6, MRE11 and RSC-C function within the same pathway, and the overexpression of ARP6 rescues rsc2∆ and mre11∆ sensitivity to DNA-damaging agents. Double mutants of ARP6, and members of the INO80 and SWR1 complexes, cause a significant reduction in repair efficiency, suggesting that ARP6 functions independently of SWR1-C and INO80-C. These findings support a novel role for ARP6 in DSB repair that is independent of the SWR1 chromatin remodeling complex, through an apparent RSC-C and MRE11-associated DNA repair pathway.
Collapse
|
30
|
Lamm N, Rogers S, Cesare AJ. Chromatin mobility and relocation in DNA repair. Trends Cell Biol 2021; 31:843-855. [PMID: 34183232 DOI: 10.1016/j.tcb.2021.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
The nucleus is a dynamic environment containing chromatin, membraneless organelles, and specialized molecular structures at the nuclear membrane. Within the spectrum of DNA repair activities are observations of increased mobility of damaged chromatin and the displacement of DNA lesions to specific nuclear environments. Here, we focus on the role that nuclear-specific filamentous actin plays in mobilizing damaged chromatin in response to DNA double-strand breaks and replication stress. We also examine nuclear pore complexes and promyelocytic leukemia-nuclear bodies as specialized platforms for homology-directed repair. The literature suggests an emerging model where specific types of DNA lesions are subjected to nuclear-derived forces that mobilize damaged chromatin and promote interaction with repair hubs to facilitate specialized repair reactions.
Collapse
Affiliation(s)
- Noa Lamm
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Samuel Rogers
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Anthony J Cesare
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia.
| |
Collapse
|
31
|
Hsu CL, Chong SY, Lin CY, Kao CF. Histone dynamics during DNA replication stress. J Biomed Sci 2021; 28:48. [PMID: 34144707 PMCID: PMC8214274 DOI: 10.1186/s12929-021-00743-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Accurate and complete replication of the genome is essential not only for genome stability but also for cell viability. However, cells face constant threats to the replication process, such as spontaneous DNA modifications and DNA lesions from endogenous and external sources. Any obstacle that slows down replication forks or perturbs replication dynamics is generally considered to be a form of replication stress, and the past decade has seen numerous advances in our understanding of how cells respond to and resolve such challenges. Furthermore, recent studies have also uncovered links between defects in replication stress responses and genome instability or various diseases, such as cancer. Because replication stress takes place in the context of chromatin, histone dynamics play key roles in modulating fork progression and replication stress responses. Here, we summarize the current understanding of histone dynamics in replication stress, highlighting recent advances in the characterization of fork-protective mechanisms.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
32
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
33
|
Whalen JM, Dhingra N, Wei L, Zhao X, Freudenreich CH. Relocation of Collapsed Forks to the Nuclear Pore Complex Depends on Sumoylation of DNA Repair Proteins and Permits Rad51 Association. Cell Rep 2021; 31:107635. [PMID: 32402281 DOI: 10.1016/j.celrep.2020.107635] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/07/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022] Open
Abstract
Expanded CAG repeats form stem-loop secondary structures that lead to fork stalling and collapse. Previous work has shown that these collapsed forks relocalize to nuclear pore complexes (NPCs) in late S phase in a manner dependent on replication, the nucleoporin Nup84, and the Slx5 protein, which prevents repeat fragility and instability. Here, we show that binding of the Smc5/6 complex to the collapsed fork triggers Mms21-dependent sumoylation of fork-associated DNA repair proteins, and that RPA, Rad52, and Rad59 are the key sumoylation targets that mediate relocation. The SUMO interacting motifs of Slx5 target collapsed forks to the NPC. Notably, Rad51 foci only co-localize with the repeat after it is anchored to the nuclear periphery and Rad51 exclusion from the early collapsed fork is dependent on RPA sumoylation. This pathway may provide a mechanism to constrain recombination at stalled or collapsed forks until it is required for fork restart.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Nalini Dhingra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, MA 02155, USA; Program in Genetics, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
34
|
Tripuraneni V, Memisoglu G, MacAlpine HK, Tran TQ, Zhu W, Hartemink AJ, Haber JE, MacAlpine DM. Local nucleosome dynamics and eviction following a double-strand break are reversible by NHEJ-mediated repair in the absence of DNA replication. Genome Res 2021; 31:775-788. [PMID: 33811083 PMCID: PMC8092003 DOI: 10.1101/gr.271155.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
We interrogated at nucleotide resolution the spatiotemporal order of chromatin changes that occur immediately following a site-specific double-strand break (DSB) upstream of the PHO5 locus and its subsequent repair by nonhomologous end joining (NHEJ). We observed the immediate eviction of a nucleosome flanking the break and the repositioning of adjacent nucleosomes away from the break. These early chromatin events were independent of the end-processing Mre11-Rad50-Xrs2 (MRX) complex and preceded the MRX-dependent broad eviction of histones and DNA end-resectioning that extends up to ∼8 kb away from the break. We also examined the temporal dynamics of NHEJ-mediated repair in a G1-arrested population. Concomitant with DSB repair by NHEJ, we observed the redeposition and precise repositioning of nucleosomes at their originally occupied positions. This re-establishment of the prelesion chromatin landscape suggests that a DNA replication-independent mechanism exists to preserve epigenome organization following DSB repair.
Collapse
Affiliation(s)
- Vinay Tripuraneni
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Gonen Memisoglu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Trung Q Tran
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Wei Zhu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
35
|
García Fernández F, Lemos B, Khalil Y, Batrin R, Haber JE, Fabre E. Modified chromosome structure caused by phosphomimetic H2A modulates the DNA damage response by increasing chromatin mobility in yeast. J Cell Sci 2021; 134:jcs.258500. [PMID: 33622771 DOI: 10.1242/jcs.258500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
In budding yeast and mammals, double-strand breaks (DSBs) trigger global chromatin mobility together with rapid phosphorylation of histone H2A over an extensive region of the chromatin. To assess the role of H2A phosphorylation in this response to DNA damage, we have constructed strains where H2A has been mutated to the phosphomimetic H2A-S129E. We show that mimicking H2A phosphorylation leads to an increase in global chromatin mobility in the absence of DNA damage. The intrinsic chromatin mobility of H2A-S129E is not due to downstream checkpoint activation, histone degradation or kinetochore anchoring. Rather, the increased intrachromosomal distances observed in the H2A-S129E mutant are consistent with chromatin structural changes. Strikingly, in this context the Rad9-dependent checkpoint becomes dispensable. Moreover, increased chromatin dynamics in the H2A-S129E mutant correlates with improved DSB repair by non-homologous end joining and a sharp decrease in interchromosomal translocation rate. We propose that changes in chromosomal conformation due to H2A phosphorylation are sufficient to modulate the DNA damage response and maintain genome integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Brenda Lemos
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yasmine Khalil
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Renaud Batrin
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuelle Fabre
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| |
Collapse
|
36
|
A Conserved Histone H3-H4 Interface Regulates DNA Damage Tolerance and Homologous Recombination during the Recovery from Replication Stress. Mol Cell Biol 2021; 41:MCB.00044-20. [PMID: 33526454 DOI: 10.1128/mcb.00044-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 01/24/2021] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, genomic DNA is packaged into nucleosomes, which are the basal components coordinating both the structures and functions of chromatin. In this study, we screened a collection of mutations for histone H3/H4 mutants in Saccharomyces cerevisiae that affect the DNA damage sensitivity of DNA damage tolerance (DDT)-deficient cells. We identified a class of histone H3/H4 mutations that suppress methyl methanesulfonate (MMS) sensitivity of DDT-deficient cells (referred to here as the histone SDD mutations), which likely cluster on a specific H3-H4 interface of the nucleosomes. The histone SDD mutations did not suppress the MMS sensitivity of DDT-deficient cells in the absence of Rad51, indicating that homologous recombination (HR) is responsible for DNA damage resistance. Furthermore, the histone SDD mutants showed reduced levels of PCNA ubiquitination after exposure to MMS or UV irradiation, consistent with decreased MMS-induced mutagenesis relative to that of wild-type cells. We also found that histone SDD mutants lacking the INO80 chromatin remodeler impair HR-dependent recovery from MMS-induced replication arrest, resulting in defective S-phase progression and increased Rad52 foci. Taken together, our data provide novel insights into nucleosome functions, which link INO80-dependent chromatin remodeling to the regulation of DDT and HR during the recovery from replication blockage.
Collapse
|
37
|
dos Santos Á, Toseland CP. Regulation of Nuclear Mechanics and the Impact on DNA Damage. Int J Mol Sci 2021; 22:3178. [PMID: 33804722 PMCID: PMC8003950 DOI: 10.3390/ijms22063178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, the nucleus houses the genomic material of the cell. The physical properties of the nucleus and its ability to sense external mechanical cues are tightly linked to the regulation of cellular events, such as gene expression. Nuclear mechanics and morphology are altered in many diseases such as cancer and premature ageing syndromes. Therefore, it is important to understand how different components contribute to nuclear processes, organisation and mechanics, and how they are misregulated in disease. Although, over the years, studies have focused on the nuclear lamina-a mesh of intermediate filament proteins residing between the chromatin and the nuclear membrane-there is growing evidence that chromatin structure and factors that regulate chromatin organisation are essential contributors to the physical properties of the nucleus. Here, we review the main structural components that contribute to the mechanical properties of the nucleus, with particular emphasis on chromatin structure. We also provide an example of how nuclear stiffness can both impact and be affected by cellular processes such as DNA damage and repair.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher P. Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
38
|
Peritore M, Reusswig KU, Bantele SCS, Straub T, Pfander B. Strand-specific ChIP-seq at DNA breaks distinguishes ssDNA versus dsDNA binding and refutes single-stranded nucleosomes. Mol Cell 2021; 81:1841-1853.e4. [PMID: 33651987 DOI: 10.1016/j.molcel.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
In a first step of DNA double-strand break (DSB) repair by homologous recombination, DNA ends are resected such that single-stranded DNA (ssDNA) overhangs are generated. ssDNA is specifically bound by RPA and other factors, which constitutes a ssDNA-domain on damaged chromatin. The molecular organization of this ssDNA and the adjacent dsDNA domain is crucial during DSB signaling and repair. However, data regarding the presence of nucleosomes, the most basic chromatin components, in the ssDNA domain have been contradictory. Here, we use site-specific induction of DSBs and chromatin immunoprecipitation followed by strand-specific sequencing to analyze in vivo binding of key DSB repair and signaling proteins to either the ssDNA or dsDNA domain. In the case of nucleosomes, we show that recently proposed ssDNA nucleosomes are not a major, persistent species, but that nucleosome eviction and DNA end resection are intrinsically coupled. These results support a model of separated dsDNA-nucleosome and ssDNA-RPA domains during DSB repair.
Collapse
Affiliation(s)
- Martina Peritore
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Karl-Uwe Reusswig
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Susanne C S Bantele
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Tobias Straub
- Biomedizinisches Centrum, Core Facility Bioinformatics, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Boris Pfander
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
39
|
Murray-Nerger LA, Justice JL, Rekapalli P, Hutton JE, Cristea I. Lamin B1 acetylation slows the G1 to S cell cycle transition through inhibition of DNA repair. Nucleic Acids Res 2021; 49:2044-2064. [PMID: 33533922 PMCID: PMC7913768 DOI: 10.1093/nar/gkab019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
The integrity and regulation of the nuclear lamina is essential for nuclear organization and chromatin stability, with its dysregulation being linked to laminopathy diseases and cancer. Although numerous posttranslational modifications have been identified on lamins, few have been ascribed a regulatory function. Here, we establish that lamin B1 (LMNB1) acetylation at K134 is a molecular toggle that controls nuclear periphery stability, cell cycle progression, and DNA repair. LMNB1 acetylation prevents lamina disruption during herpesvirus type 1 (HSV-1) infection, thereby inhibiting virus production. We also demonstrate the broad impact of this site on laminar processes in uninfected cells. LMNB1 acetylation negatively regulates canonical nonhomologous end joining by impairing the recruitment of 53BP1 to damaged DNA. This defect causes a delay in DNA damage resolution and a persistent activation of the G1/S checkpoint. Altogether, we reveal LMNB1 acetylation as a mechanism for controlling DNA repair pathway choice and stabilizing the nuclear periphery.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Pranav Rekapalli
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
40
|
Charifi F, Churikov D, Eckert-Boulet N, Minguet C, Jourquin F, Hardy J, Lisby M, Simon MN, Géli V. Rad52 SUMOylation functions as a molecular switch that determines a balance between the Rad51- and Rad59-dependent survivors. iScience 2021; 24:102231. [PMID: 33748714 PMCID: PMC7966982 DOI: 10.1016/j.isci.2021.102231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Functional telomeres in yeast lacking telomerase can be restored by rare Rad51- or Rad59-dependent recombination events that lead to type I and type II survivors, respectively. We previously proposed that polySUMOylation of proteins and the SUMO-targeted ubiquitin ligase Slx5-Slx8 are key factors in type II recombination. Here, we show that SUMOylation of Rad52 favors the formation of type I survivors. Conversely, preventing Rad52 SUMOylation partially bypasses the requirement of Slx5-Slx8 for type II recombination. We further report that SUMO-dependent proteasomal degradation favors type II recombination. Finally, inactivation of Rad59, but not Rad51, impairs the relocation of eroded telomeres to the Nuclear Pore complexes (NPCs). We propose that Rad59 cooperates with non-SUMOylated Rad52 to promote type II recombination at NPCs, resulting in the emergence of more robust survivors akin to ALT cancer cells. Finally, neither Rad59 nor Rad51 is required by itself for the survival of established type II survivors.
Collapse
Affiliation(s)
- Ferose Charifi
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Dmitri Churikov
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | | | - Christopher Minguet
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Frédéric Jourquin
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Julien Hardy
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, 13009, France
| |
Collapse
|
41
|
Mackenroth B, Alani E. Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity. DNA Repair (Amst) 2021; 97:103018. [PMID: 33285474 PMCID: PMC8486310 DOI: 10.1016/j.dnarep.2020.103018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023]
Abstract
Homologous recombination (HR), considered the highest fidelity DNA double-strand break (DSB) repair pathway that a cell possesses, is capable of repairing multiple DSBs without altering genetic information. However, in "last resort" scenarios, HR can be directed to low fidelity subpathways which often use non-allelic donor templates. Such repair mechanisms are often highly mutagenic and can also yield chromosomal rearrangements and/or deletions. While the choice between HR and its less precise counterpart, non-homologous end joining (NHEJ), has received much attention, less is known about how cells manage and prioritize HR subpathways. In this review, we describe work focused on how chromatin and nuclear architecture orchestrate subpathway choice and repair template usage to maintain genome integrity without sacrificing cell survival. Understanding the relationships between nuclear architecture and recombination mechanics will be critical to understand these cellular repair decisions.
Collapse
Affiliation(s)
- Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States.
| |
Collapse
|
42
|
Forey R, Barthe A, Tittel-Elmer M, Wery M, Barrault MB, Ducrot C, Seeber A, Krietenstein N, Szachnowski U, Skrzypczak M, Ginalski K, Rowicka M, Cobb JA, Rando OJ, Soutourina J, Werner M, Dubrana K, Gasser SM, Morillon A, Pasero P, Lengronne A, Poli J. A Role for the Mre11-Rad50-Xrs2 Complex in Gene Expression and Chromosome Organization. Mol Cell 2020; 81:183-197.e6. [PMID: 33278361 DOI: 10.1016/j.molcel.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023]
Abstract
Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.
Collapse
Affiliation(s)
- Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Mireille Tittel-Elmer
- Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Maxime Wery
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Marie-Bénédicte Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cécile Ducrot
- Institute of Molecular and Cellular Radiobiology, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF), 92260 Fontenay-aux-Roses Cedex, France
| | - Andrew Seeber
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA; University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Nils Krietenstein
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ugo Szachnowski
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jennifer A Cobb
- Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Michel Werner
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Karine Dubrana
- Institute of Molecular and Cellular Radiobiology, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF), 92260 Fontenay-aux-Roses Cedex, France
| | - Susan M Gasser
- University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Antonin Morillon
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France.
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France; University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
43
|
Brown RE, Freudenreich CH. Structure-forming repeats and their impact on genome stability. Curr Opin Genet Dev 2020; 67:41-51. [PMID: 33279816 DOI: 10.1016/j.gde.2020.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Repetitive sequences throughout the genome are a major source of endogenous DNA damage, due to the propensity of many of them to form alternative non-B DNA structures that can interfere with replication, transcription, and DNA repair. These repetitive sequences are prone to breakage (fragility) and instability (changes in repeat number). Repeat fragility and expansions are linked to several diseases, including many cancers and neurodegenerative diseases, hence the importance of understanding the mechanisms that cause genome instability and contribute to these diseases. This review focuses on recent findings of mechanisms causing repeat fragility and instability, new associations between repeat expansions and genetic diseases, and potential therapeutic options to target repeat expansions.
Collapse
Affiliation(s)
- Rebecca E Brown
- Program in Genetics, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, MA 02155, USA; Program in Genetics, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA.
| |
Collapse
|
44
|
The nuclear pore primes recombination-dependent DNA synthesis at arrested forks by promoting SUMO removal. Nat Commun 2020; 11:5643. [PMID: 33159083 PMCID: PMC7648084 DOI: 10.1038/s41467-020-19516-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Nuclear Pore complexes (NPCs) act as docking sites to anchor particular DNA lesions facilitating DNA repair by elusive mechanisms. Using replication fork barriers in fission yeast, we report that relocation of arrested forks to NPCs occurred after Rad51 loading and its enzymatic activity. The E3 SUMO ligase Pli1 acts at arrested forks to safeguard integrity of nascent strands and generates poly-SUMOylation which promote relocation to NPCs but impede the resumption of DNA synthesis by homologous recombination (HR). Anchorage to NPCs allows SUMO removal by the SENP SUMO protease Ulp1 and the proteasome, promoting timely resumption of DNA synthesis. Preventing Pli1-mediated SUMO chains was sufficient to bypass the need for anchorage to NPCs and the inhibitory effect of poly-SUMOylation on HR-mediated DNA synthesis. Our work establishes a novel spatial control of Recombination-Dependent Replication (RDR) at a unique sequence that is distinct from mechanisms engaged at collapsed-forks and breaks within repeated sequences. In yeast, collapsed forks shift to the nuclear periphery to associate with two distinct perinuclear anchorage sites such as the nuclear pore complex. Here, the authors reveal the mechanisms engaged at nuclear pore complex facilitating fork integrity and restart via SUMO regulation.
Collapse
|
45
|
González-Arranz S, Gardner JM, Yu Z, Patel NJ, Heldrich J, Santos B, Carballo JA, Jaspersen SL, Hochwagen A, San-Segundo PA. SWR1-Independent Association of H2A.Z to the LINC Complex Promotes Meiotic Chromosome Motion. Front Cell Dev Biol 2020; 8:594092. [PMID: 33195270 PMCID: PMC7642583 DOI: 10.3389/fcell.2020.594092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 11/27/2022] Open
Abstract
The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the linker of nucleoskeleton, and cytoskeleton (LINC) complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton, promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during the meiotic prophase is reduced in the htz1Δ mutant lacking H2A.Z, but it is unaffected in swr1Δ cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.
Collapse
Affiliation(s)
- Sara González-Arranz
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Neem J. Patel
- Department of Biology, New York University, New York, NY, United States
| | - Jonna Heldrich
- Department of Biology, New York University, New York, NY, United States
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Jesús A. Carballo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| |
Collapse
|
46
|
Miné-Hattab J, Chiolo I. Complex Chromatin Motions for DNA Repair. Front Genet 2020; 11:800. [PMID: 33061931 PMCID: PMC7481375 DOI: 10.3389/fgene.2020.00800] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
A number of studies across different model systems revealed that chromatin undergoes significant changes in dynamics in response to DNA damage. These include local motion changes at damage sites, increased nuclear exploration of both damaged and undamaged loci, and directed motions to new nuclear locations associated with certain repair pathways. These studies also revealed the need for new analytical methods to identify directed motions in a context of mixed trajectories, and the importance of investigating nuclear dynamics over different time scales to identify diffusion regimes. Here we provide an overview of the current understanding of this field, including imaging and analytical methods developed to investigate nuclear dynamics in different contexts. These dynamics are essential for genome integrity. Identifying the molecular mechanisms responsible for these movements is key to understanding how their misregulation contributes to cancer and other genome instability disorders.
Collapse
Affiliation(s)
- Judith Miné-Hattab
- UMR 3664, CNRS, Institut Curie, PSL Research University, Paris, France
- UMR 3664, CNRS, Institut Curie, Sorbonne Université, Paris, France
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Abstract
The presence of actin in the nucleus has historically been a highly contentious issue. It is now, however, well accepted that actin has physiologically important roles in the nucleus. In this Review, we describe the evolution of our thinking about actin in the nucleus starting with evidence supporting its involvement in transcription, chromatin remodeling and intranuclear movements. We also review the growing literature on the mechanisms that regulate the import and export of actin and how post-translational modifications of actin could regulate nuclear actin. We end with an extended discussion of the role of nuclear actin in the repair of DNA double stranded breaks.
Collapse
Affiliation(s)
- Leonid Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
48
|
Whalen JM, Freudenreich CH. Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability. Genes (Basel) 2020; 11:E635. [PMID: 32526925 PMCID: PMC7348918 DOI: 10.3390/genes11060635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Components of the nuclear pore complex (NPC) have been shown to play a crucial role in protecting against replication stress, and recovery from some types of stalled or collapsed replication forks requires movement of the DNA to the NPC in order to maintain genome stability. The role that nuclear positioning has on DNA repair has been investigated in several systems that inhibit normal replication. These include structure forming sequences (expanded CAG repeats), protein mediated stalls (replication fork barriers (RFBs)), stalls within the telomere sequence, and the use of drugs known to stall or collapse replication forks (HU + MMS or aphidicolin). Recently, the mechanism of relocation for collapsed replication forks to the NPC has been elucidated. Here, we will review the types of replication stress that relocate to the NPC, the current models for the mechanism of relocation, and the currently known protective effects of this movement.
Collapse
Affiliation(s)
- Jenna M. Whalen
- Department of Biology, Tufts University, Medford, MA 02155, USA;
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA 02155, USA;
- Program in Genetics, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
49
|
Cheema MS, Good KV, Kim B, Soufari H, O’Sullivan C, Freeman ME, Stefanelli G, Casas CR, Zengeler KE, Kennedy AJ, Eirin Lopez JM, Howard PL, Zovkic IB, Shabanowitz J, Dryhurst DD, Hunt DF, Mackereth CD, Ausió J. Deciphering the Enigma of the Histone H2A.Z-1/H2A.Z-2 Isoforms: Novel Insights and Remaining Questions. Cells 2020; 9:cells9051167. [PMID: 32397240 PMCID: PMC7290884 DOI: 10.3390/cells9051167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription. However, its functional involvement in gene expression is controversial. Moreover, the variant in several groups of metazoan organisms consists of two main isoforms (H2A.Z-1 and H2A.Z-2) that differ in a few (3–6) amino acids. They comprise the main topic of this review, starting from the events that led to their identification, what is currently known about them, followed by further experimental, structural, and functional insight into their roles. Despite their structural differences, a direct correlation to their functional variability remains enigmatic. As all of this is being elucidated, it appears that a strong functional involvement of isoform variability may be connected to development.
Collapse
Affiliation(s)
- Manjinder S. Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Bohyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Heddy Soufari
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France; (H.S.); (C.D.M.)
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Univ. Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Melissa E. Freeman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Gilda Stefanelli
- Department of Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.S.); (I.B.Z.)
| | - Ciro Rivera Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL 33181, USA; (C.R.C.); (J.M.E.L.)
| | - Kristine E. Zengeler
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA; (K.E.Z.); (A.J.K.)
| | - Andrew J. Kennedy
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA; (K.E.Z.); (A.J.K.)
| | - Jose Maria Eirin Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL 33181, USA; (C.R.C.); (J.M.E.L.)
| | - Perry L. Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Iva B. Zovkic
- Department of Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.S.); (I.B.Z.)
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (J.S.); (D.F.H.)
| | - Deanna D. Dryhurst
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (J.S.); (D.F.H.)
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Cameron D. Mackereth
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France; (H.S.); (C.D.M.)
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Univ. Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
- Correspondence: ; Tel.: +1-250-721-8863; Fax: +1-250-721-8855
| |
Collapse
|
50
|
Mitrentsi I, Yilmaz D, Soutoglou E. How to maintain the genome in nuclear space. Curr Opin Cell Biol 2020; 64:58-66. [PMID: 32220808 DOI: 10.1016/j.ceb.2020.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 02/23/2020] [Indexed: 01/27/2023]
Abstract
Genomic instability can be life-threatening. The fine balance between error-free and mutagenic DNA repair pathways is essential for maintaining genome integrity. Recent advances in DNA double-strand break induction and detection techniques have allowed the investigation of DNA damage and repair in the context of the highly complex nuclear structure. These studies have revealed that the 3D genome folding, nuclear compartmentalization and cytoskeletal components control the spatial distribution of DNA lesions within the nuclear space and dictate their mode of repair.
Collapse
Affiliation(s)
- Ioanna Mitrentsi
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Duygu Yilmaz
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France.
| |
Collapse
|