1
|
Thu YM. Multifaceted roles of SUMO in DNA metabolism. Nucleus 2024; 15:2398450. [PMID: 39287196 PMCID: PMC11409511 DOI: 10.1080/19491034.2024.2398450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Sumoylation, a process in which SUMO (small ubiquitin like modifier) is conjugated to target proteins, emerges as a post-translational modification that mediates protein-protein interactions, protein complex assembly, and localization of target proteins. The coordinated actions of SUMO ligases, proteases, and SUMO-targeted ubiquitin ligases determine the net result of sumoylation. It is well established that sumoylation can somewhat promiscuously target proteins in groups as well as selectively target individual proteins. Through changing protein dynamics, sumoylation orchestrates multi-step processes in chromatin biology. Sumoylation influences various steps of mitosis, DNA replication, DNA damage repair, and pathways protecting chromosome integrity. This review highlights examples of SUMO-regulated nuclear processes to provide mechanistic views of sumoylation in DNA metabolism.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biology, Colby College, Waterville, ME, USA
| |
Collapse
|
2
|
Kato Y, Alavattam KG, Sin HS, Meetei AR, Pang Q, Andreassen PR, Namekawa SH. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis. Hum Mol Genet 2015; 24:5234-49. [PMID: 26123487 DOI: 10.1093/hmg/ddv244] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia (FA) is a recessive X-linked and autosomal genetic disease associated with bone marrow failure and increased cancer, as well as severe germline defects such as hypogonadism and germ cell depletion. Although deficiencies in FA factors are commonly associated with germ cell defects, it remains unknown whether the FA pathway is involved in unique epigenetic events in germ cells. In this study, we generated Fancb mutant mice, the first mouse model of X-linked FA, and identified a novel function of the FA pathway in epigenetic regulation during mammalian gametogenesis. Fancb mutant mice were infertile and exhibited primordial germ cell (PGC) defects during embryogenesis. Further, Fancb mutation resulted in the reduction of undifferentiated spermatogonia in spermatogenesis, suggesting that FANCB regulates the maintenance of undifferentiated spermatogonia. Additionally, based on functional studies, we dissected the pathway in which FANCB functions during meiosis. The localization of FANCB on sex chromosomes is dependent on MDC1, a binding partner of H2AX phosphorylated at serine 139 (γH2AX), which initiates chromosome-wide silencing. Also, FANCB is required for FANCD2 localization during meiosis, suggesting that the role of FANCB in the activation of the FA pathway is common to both meiosis and somatic DNA damage responses. H3K9me2, a silent epigenetic mark, was decreased on sex chromosomes, whereas H3K9me3 was increased on sex chromosomes in Fancb mutant spermatocytes. Taken together, these results indicate that FANCB functions at critical stages of germ cell development and reveal a novel function of the FA pathway in the regulation of H3K9 methylation in the germline.
Collapse
Affiliation(s)
- Yasuko Kato
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Ho-Su Sin
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 4929, USA
| |
Collapse
|