1
|
Bai W, Wang Y, Ma J, Li G, Wang Y, Yang C, Zhang Q, Li Q, Zhang J, Zhang P. Histone deacetylase Hos1 promotes the homeostasis of Candida albicans cell wall and membrane and its specific inhibitor has an antifungal activity in vivo. Microbiol Res 2025; 296:128132. [PMID: 40112660 DOI: 10.1016/j.micres.2025.128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The rise of drug-resistant Candida albicans (C. albicans) has led to an urgent need for new therapeutic strategies. Histone deacetylases (HDACs) inhibition has been shown to limit fungal virulence while enhancing the efficacy of antifungal drugs against Candida. However, HDACs are highly conserved from yeast to humans, which has hindered the application of these inhibitors in the antifungal therapy. The aim of this study is to identify a suitable antifungal target and develop specific inhibitors targeting C. albicans HDACs. Based on sequence alignments, the HDAC Hos1 in C. albicans was proposed as a target for further investigation. We evaluated the impact of Hos1 on C. albicans pathogenicity using a murine model of disseminated candidiasis. Results showed that Hos1 null mutant caused less damage to mouse tissues. Additionally, we demonstrated that the reduced virulence was due to inhibition of cell wall O-mannan biosynthesis and altered metabolic flexibility, leading to decreased adaptability of C. albicans. Increased sensitivity of C. albicans to antifungal drugs was attributed to abnormal accumulation of ergosterol in the cell membrane. Furthermore, we identified Hos1 inhibitors from the ZINC database using molecular docking. These inhibitors exhibited highly specific inhibition of the deacetylation activity of C. albicans Hos1. Importantly, the inhibitors not only reduced colonization and invasion by C. albicans in vivo but also synergized with polyene drugs to combat C. albicans by causing abnormal accumulation of ergosterol. Our findings provide detailed insights into antifungal targets and a useful foundation for the discovery of antifungal drugs specifically targeting Candida.
Collapse
Affiliation(s)
- Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanmei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuchen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Zonglian College, Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Song N, Huang Y, Zhou X, Li D, Liu W, Li X. Potential role of lysine acetylation in the stepwise adaptation of Candida albicans to fluconazole. Microbiol Spectr 2025; 13:e0279724. [PMID: 40231831 PMCID: PMC12054006 DOI: 10.1128/spectrum.02797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Candida albicans is an opportunistic fungal pathogen capable of causing superficial mucosal and systemic infections, sometimes leading to life-threatening conditions. The increasing resistance of C. albicans to azole antifungals has become a significant challenge in clinical treatment. Lysine acetylation (KAc) is a well-studied post-translational modification that plays crucial roles in various biological processes. However, its impact on antifungal resistance in C. albicans remains poorly understood. Five strains of C. albicans isolated from the same patient, representing different stages of acquired fluconazole resistance in vivo, were used in this study to investigate the potential regulatory mechanism of KAc on the development of azole resistance in C. albicans. Quantitative proteomic analysis using tandem mass tag (TMT) labeling, acetylation enrichment, and liquid chromatography-mass spectrometry (LC-MS) was conducted on these five strains. We divided all strains into four comparison groups and identified a total of 1,796 lysine acetylation sites across 938 proteins, with quantitative data available for 1,314 acetylation sites in 712 proteins. Analysis of 155 significantly differentially modified sites revealed that the acetylation levels of key proteins involved in the conversion of pyruvate to acetyl-CoA for entry into the tricarboxylic acid (TCA) cycle for energy production were initially decreased and then increased during the acquisition of fluconazole resistance. Additionally, the acetylation levels of proteins involved in ribosome synthesis, translation processes, and amino acid synthesis were found to increase. Therefore, lysine acetylation in C. albicans may contribute to azole resistance by regulating energy metabolism and protein synthesis. I Candida albicans, an opportunistic fungal pathogen, presents significant clinical challenges due to its escalating resistance to azole antifungals, especially fluconazole. This study investigates the role of lysine acetylation in the development of azole resistance using multiple strains isolated from a single patient with varying resistance levels. Through advanced proteomic analysis, we identified numerous lysine acetylation sites on proteins involved in key metabolic pathways. The results revealed a dynamic change in the acetylation of proteins related to energy metabolism - specifically, those connecting pyruvate to the tricarboxylic acid cycle-which correlated with the evolution of resistance. Additionally, increased acetylation was observed in proteins linked to ribosome synthesis and translation processes. These findings suggest that lysine acetylation is crucial for regulating metabolic and protein synthesis pathways, potentially influencing azole resistance in C. albicans.
Collapse
Affiliation(s)
- Nana Song
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Yuying Huang
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xiaowei Zhou
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofang Li
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Qin R, Yang T, Jiang H, Yu M. ZNF521 promotes acute myeloid leukemogenesis by suppressing the expression and acetylation of SMC3. Heliyon 2024; 10:e37528. [PMID: 39309877 PMCID: PMC11415694 DOI: 10.1016/j.heliyon.2024.e37528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Zinc finger protein 521 (ZNF521) participates in the self-renewal of hematopoietic stem cells, and its abnormal expression has been implicated to promote leukemia. However, the specific role of ZNF521 in leukemia has not been fully understood. In this study, we aimed to further elucidate its role. Using acute leukemia cell line THP-1, we demonstrated that knocking down ZNF521 inhibited leukemia cell proliferation, promoted apoptosis, and induced cell arrest in G2/M phase. Interestingly, we also observed the upregulation of SMC3 expression and acetylation, as well as the downregulation of histone deacetylases 8 (HDAC8), CDK2, and CDK6. The proliferation inhibition was reversed by knocking down SMC3, suggesting the key role of SMC3 reduction in ZNF521 elevated proliferation. Conversely, ZNF521 overexpression in HL-60 cells resulted in enhanced proliferation and inhibited apoptosis. Furthermore, we discovered that ZNF521 can interact with HDAC8, which deacetylates SMC3, and the interaction promotes proliferation and suppresses apoptosis. Notably, when HDAC8 was knocked down or its activity was inhibited by a HDAC8 inhibitor, the previous observed trend was reversed. Consequently, ZNF521 plays a critical role in acute myeloid leukemogenesis by reducing the expression and acetylation of SMC3. Overall, this study sheds light on the potential for targeted treatment in highly ZNF521 expressed acute myeloid leukemia, providing a valuable clue for precise and effective therapeutic approaches.
Collapse
Affiliation(s)
- Rong Qin
- Hematologic Malignancy Group, Academy of Biomedical Engineering Research, Kunming Medical University, Kunming, 650500, PR China
| | - Tongshuo Yang
- Hematologic Malignancy Group, Academy of Biomedical Engineering Research, Kunming Medical University, Kunming, 650500, PR China
| | - Hongchao Jiang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan, 650228, PR China
| | - Ming Yu
- Hematologic Malignancy Group, Academy of Biomedical Engineering Research, Kunming Medical University, Kunming, 650500, PR China
| |
Collapse
|
4
|
Adams DJ, Barlas B, McIntyre RE, Salguero I, van der Weyden L, Barros A, Vicente JR, Karimpour N, Haider A, Ranzani M, Turner G, Thompson NA, Harle V, Olvera-León R, Robles-Espinoza CD, Speak AO, Geisler N, Weninger WJ, Geyer SH, Hewinson J, Karp NA, Fu B, Yang F, Kozik Z, Choudhary J, Yu L, van Ruiten MS, Rowland BD, Lelliott CJ, Del Castillo Velasco-Herrera M, Verstraten R, Bruckner L, Henssen AG, Rooimans MA, de Lange J, Mohun TJ, Arends MJ, Kentistou KA, Coelho PA, Zhao Y, Zecchini H, Perry JRB, Jackson SP, Balmus G. Genetic determinants of micronucleus formation in vivo. Nature 2024; 627:130-136. [PMID: 38355793 PMCID: PMC10917660 DOI: 10.1038/s41586-023-07009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.
Collapse
Affiliation(s)
- D J Adams
- Wellcome Sanger Institute, Cambridge, UK.
| | - B Barlas
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - I Salguero
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - A Barros
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - J R Vicente
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - N Karimpour
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Haider
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Ranzani
- Wellcome Sanger Institute, Cambridge, UK
| | - G Turner
- Wellcome Sanger Institute, Cambridge, UK
| | | | - V Harle
- Wellcome Sanger Institute, Cambridge, UK
| | | | - C D Robles-Espinoza
- Wellcome Sanger Institute, Cambridge, UK
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| | - A O Speak
- Wellcome Sanger Institute, Cambridge, UK
| | - N Geisler
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - W J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - S H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - J Hewinson
- Wellcome Sanger Institute, Cambridge, UK
| | - N A Karp
- Wellcome Sanger Institute, Cambridge, UK
| | - B Fu
- Wellcome Sanger Institute, Cambridge, UK
| | - F Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Z Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - J Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - L Yu
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - M S van Ruiten
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - L Bruckner
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - A G Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M A Rooimans
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J de Lange
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - T J Mohun
- Division of Developmental Biology, MRC, National Institute for Medical Research, London, UK
| | - M J Arends
- Division of Pathology, Cancer Research UK Scotland Centre, Institute of Genetics & Cancer The University of Edinburgh, Edinburgh, UK
| | - K A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - P A Coelho
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Y Zhao
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - H Zecchini
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - J R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - S P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - G Balmus
- Wellcome Sanger Institute, Cambridge, UK.
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Zhang X, Noberini R, Bonaldi T, Collemare J, Seidl MF. The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses. Microb Genom 2022; 8. [PMID: 36129736 PMCID: PMC9676040 DOI: 10.1099/mgen.0.000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy
| | - Jerome Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
6
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Tian Y, Sun P, Liu WX, Shan LY, Hu YT, Fan HT, Shen W, Liu YB, Zhou Y, Zhang T. Single-cell RNA sequencing of the Mongolia sheep testis reveals a conserved and divergent transcriptome landscape of mammalian spermatogenesis. FASEB J 2022; 36:e22348. [PMID: 35583907 DOI: 10.1096/fj.202200152r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a highly coordinated and complex process, and is pivotal for transmitting genetic information between mammalian generations. In this study, we investigated the conservation, differences, and biological functions of homologous genes during spermatogenesis in Mongolia sheep, humans, cynomolgus monkey, and mice using single-cell RNA sequencing technology. We compared X chromosome meiotic inactivation events in Mongolia sheep, humans, cynomolgus monkey, and mice to uncover the concerted activity of X chromosome genes. Subsequently, we focused on the dynamics of gene expression, key biological functions, and signaling pathways at various stages of spermatogenesis in Mongolia sheep and humans. Additionally, the ligand-receptor networks of Mongolia sheep and humans in testicular somatic and germ cells at different developmental stages were mapped to reveal conserved germ cell-soma communication using single-cell resolution. These datasets provided novel information and insights to unravel the molecular regulatory mechanisms of Mongolia sheep spermatogenesis and highlight conservation in gene expression during spermatogenesis between Mongolia sheep and humans, providing a foundation for the establishment of a large mammalian disease model of male infertility.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Laboratory of Microbiology and Immunology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Xiang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Li-Ying Shan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Ting Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hai-Tao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Identification of novel biomarkers involved in pulmonary arterial hypertension based on multiple-microarray analysis. Biosci Rep 2021; 40:226338. [PMID: 32886110 PMCID: PMC7494994 DOI: 10.1042/bsr20202346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disorder. However, studies providing PAH-related gene expression profiles are scarce. To identify hub genes involved in PAH, we investigate two microarray data sets from gene expression omnibus (GEO). A total of 150 differentially expressed genes (DEGs) were identified by limma package. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included mitotic nuclear division, ATPase activity, and Herpes simplex virus one infection. Ten hub genes from three significant modules were ascertained by Cytoscape (CytoHubba). Gene set enrichment analysis (GSEA) plots showed that transcription elongation factor complex was the most significantly enriched gene set positively correlated with the PAH group. At the same time, solute proton symporter activity was the most significantly enriched gene set positively correlated with the control group. Correlation analysis between hub genes suggested that SMC4, TOP2A, SMC2, KIF11, KIF23, ANLN, ARHGAP11A, SMC3, SMC6 and RAD50 may involve in the pathogenesis of PAH. Then, the miRNA-target genes regulation network was performed to unveil the underlying complex association among them. Finally, RNA extracted from monocrotaline (MCT)-induced Rat-PAH model lung artery tissues were to conduct quantitative real-time PCR (qRT-PCR) to validate these hub genes. In conclusion, our study offers new evidence for the underlying molecular mechanisms of PAH as well as attractive targets for diagnosis and treatment of PAH.
Collapse
|
9
|
Watters JM, Wright G, Smith MA, Shah B, Wright KL. Histone deacetylase 8 inhibition suppresses mantle cell lymphoma viability while preserving natural killer cell function. Biochem Biophys Res Commun 2020; 534:773-779. [PMID: 33190829 DOI: 10.1016/j.bbrc.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Mantle Cell Lymphoma (MCL) is a non-Hodgkin lymphoma with a median survival rate of five years. Standard treatment with high-dose chemotherapy plus rituximab (anti-CD20 antibody) has extended overall survival although, the disease remains incurable. Histone deacetylases (HDAC) are a family of enzymes that regulate multiple proteins and cellular pathways through post-translational modification. Broad spectrum HDAC inhibitors have shown some therapeutic promise, inducing cell cycle inhibition and apoptosis in leukemia and non-Hodgkin's lymphoma. However, the therapeutic effects of these broad-spectrum HDAC inhibitors can detrimentally dampen Natural Killer (NK) cell cytotoxicity, reduce NK viability, and downregulate activation receptors important for NK mediated anti-tumor responses. Impairment of NK function in MCL patients during therapy potentially limits therapeutic activity of rituximab. Thus, there is an unmet need to decipher specific roles of individual HDACs in order to preserve and/or enhance NK function, while, directly impairing MCL viability. We investigated the impact of HDAC8 in MCL cell lines. Inhibition or genetic loss of HDAC8 caused MCL cells to undergo apoptosis. In contrast, exposure of primary human NK cells to an HDAC8 inhibitor does not alter viability, receptor expression, or antibody dependent cellular cytotoxicity (ADCC). However, an increase in effector cytokine interferon-gamma (IFNγ) producing NK cells was observed in response to HDAC8 inhibition. Taken together these data suggest that selective HDAC8 inhibitors may simultaneously preserve NK functional activity, while impairing MCL tumor growth, establishing a rationale for future clinical evaluation.
Collapse
Affiliation(s)
- January M Watters
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, USA
| | - Gabriela Wright
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew A Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bijal Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
10
|
Sauty SM, Shaban K, Yankulov K. Gene repression in S. cerevisiae-looking beyond Sir-dependent gene silencing. Curr Genet 2020; 67:3-17. [PMID: 33037902 DOI: 10.1007/s00294-020-01114-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
Abstract
Gene silencing by the SIR (Silent Information Region) family of proteins in S. cerevisiae has been extensively studied and has served as a founding paradigm for our general understanding of gene repression and its links to histone deacetylation and chromatin structure. In recent years, our understanding of other mechanisms of gene repression in S.cerevisiae was significantly advanced. In this review, we focus on such Sir-independent mechanisms of gene repression executed by various Histone Deacetylases (HDACs) and Histone Methyl Transferases (HMTs). We focus on the genes regulated by these enzymes and their known mechanisms of action. We describe the cooperation and redundancy between HDACs and HMTs, and their involvement in gene repression by non-coding RNAs or by their non-histone substrates. We also propose models of epigenetic transmission of the chromatin structures produced by these enzymes and discuss these in the context of gene repression phenomena in other organisms. These include the recycling of the epigenetic marks imposed by HMTs or the recycling of the complexes harboring HDACs.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
11
|
Tisi R, Vertemara J, Zampella G, Longhese MP. Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Comput Struct Biotechnol J 2020; 18:1137-1152. [PMID: 32489527 PMCID: PMC7260605 DOI: 10.1016/j.csbj.2020.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Chromosomal DNA double-strand breaks (DSBs) are potentially lethal DNA lesions that pose a significant threat to genome stability and therefore need to be repaired to preserve genome integrity. Eukaryotic cells possess two main mechanisms for repairing DSBs: non-homologous end-joining (NHEJ) and homologous recombination (HR). HR requires that the 5' terminated strands at both DNA ends are nucleolytically degraded by a concerted action of nucleases in a process termed DNA-end resection. This degradation leads to the formation of 3'-ended single-stranded DNA (ssDNA) ends that are essential to use homologous DNA sequences for repair. The evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 complex (MRX/MRN) has enzymatic and structural activities to initiate DSB resection and to maintain the DSB ends tethered to each other for their repair. Furthermore, it is required to recruit and activate the protein kinase Tel1/ATM, which plays a key role in DSB signaling. All these functions depend on ATP-regulated DNA binding and nucleolytic activities of the complex. Several structures have been obtained in recent years for Mre11 and Rad50 subunits from archaea, and a few from the bacterial and eukaryotic orthologs. Nevertheless, the mechanism of activation of this protein complex is yet to be fully elucidated. In this review, we focused on recent biophysical and structural insights on the MRX complex and their interplay.
Collapse
Affiliation(s)
- Renata Tisi
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie and Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
12
|
Abstract
Until recently, our understanding of chromosome organization in higher eukaryotic cells has been based on analyses of large-scale, low-resolution changes in chromosomes structure. More recently, CRISPR-Cas9 technologies have allowed us to "zoom in" and visualize specific chromosome regions in live cells so that we can begin to examine in detail the dynamics of chromosome organization in individual cells. In this review, we discuss traditional methods of chromosome locus visualization and look at how CRISPR-Cas9 gene-targeting methodologies have helped improve their application. We also describe recent developments of the CRISPR-Cas9 technology that enable visualization of specific chromosome regions without the requirement for complex genetic manipulation.
Collapse
Affiliation(s)
- John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee , Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee , Dundee, UK
| |
Collapse
|
13
|
Nishiyama T. Compartments in the Ring. Mol Cell 2019; 75:201-203. [PMID: 31348876 DOI: 10.1016/j.molcel.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sister chromatid cohesion has been thought to be mediated by DNA entrapment within the large cohesin ring. Vazquez Nunez et al. and Chapard et al. now show that the ring is divided up into two sub-compartments, with implications for how these chromosomal organizers entrap DNA.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
14
|
Chapard C, Jones R, van Oepen T, Scheinost JC, Nasmyth K. Sister DNA Entrapment between Juxtaposed Smc Heads and Kleisin of the Cohesin Complex. Mol Cell 2019; 75:224-237.e5. [PMID: 31201089 PMCID: PMC6675936 DOI: 10.1016/j.molcel.2019.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/12/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Cohesin entraps sister DNAs within tripartite rings created by pairwise interactions between Smc1, Smc3, and Scc1. Because Smc1/3 ATPase heads can also interact with each other, cohesin rings have the potential to form a variety of sub-compartments. Using in vivo cysteine cross-linking, we show that when Smc1 and Smc3 ATPases are engaged in the presence of ATP (E heads), cohesin rings generate a "SMC (S) compartment" between hinge and E heads and a "kleisin (K) compartment" between E heads and their associated kleisin subunit. Upon ATP hydrolysis, cohesin's heads associate in a different mode, in which their signature motifs and their coiled coils are closely juxtaposed (J heads), creating alternative S and K compartments. We show that K compartments of either E or J type can entrap single DNAs, that acetylation of Smc3 during S phase is associated with J heads, and that sister DNAs are entrapped in J-K compartments.
Collapse
Affiliation(s)
- Christophe Chapard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robert Jones
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Till van Oepen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Johanna C Scheinost
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
15
|
García-Rodríguez LJ, Kasciukovic T, Denninger V, Tanaka TU. Aurora B-INCENP Localization at Centromeres/Inner Kinetochores Is Required for Chromosome Bi-orientation in Budding Yeast. Curr Biol 2019; 29:1536-1544.e4. [PMID: 31006569 PMCID: PMC6509284 DOI: 10.1016/j.cub.2019.03.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
Abstract
For proper chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (chromosome bi-orientation) [1, 2]. To promote bi-orientation, Aurora B kinase disrupts aberrant kinetochore-microtubule interactions [3, 4, 5, 6]. It has long been debated how Aurora B halts this action when bi-orientation is established and tension is applied across sister kinetochores. A popular explanation for it is that, upon bi-orientation, sister kinetochores are pulled in opposite directions, stretching the outer kinetochores [7, 8] and moving Aurora B substrates away from Aurora-B-localizing sites at centromeres (spatial separation model) [3, 5, 9]. This model predicts that Aurora B localization at centromeres is required for bi-orientation. However, this notion was challenged by the observation that Bir1 (yeast survivin), which recruits Ipl1-Sli15 (yeast Aurora B-INCENP) to centromeres, can become dispensable for bi-orientation [10]. This raised the possibility that Aurora B localization at centromeres is dispensable for bi-orientation. Alternatively, there might be a Bir1-independent mechanism for recruiting Ipl1-Sli15 to centromeres or inner kinetochores [5, 9]. Here, we show that the COMA inner kinetochore sub-complex physically interacts with Sli15, recruits Ipl1-Sli15 to the inner kinetochore, and promotes chromosome bi-orientation, independently of Bir1, in budding yeast. Moreover, using an engineered recruitment of Ipl1-Sli15 to the inner kinetochore when both Bir1 and COMA are defective, we show that localization of Ipl1-Sli15 at centromeres or inner kinetochores is required for bi-orientation. Our results give important insight into how Aurora B disrupts kinetochore-microtubule interaction in a tension-dependent manner to promote chromosome bi-orientation. The COMA inner kinetochore sub-complex facilitates chromosome bi-orientation COMA physically interacts with Sli15 and recruits Ipl1-Sli15 to the inner kinetochore This function of COMA is independent of Bir1 and its role supporting robust cohesion Localizing Ipl1-Sli15 at centromeres/inner kinetochores is crucial for bi-orientation
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Viola Denninger
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
16
|
Yang Y, Wang W, Li M, Gao Y, Zhang W, Huang Y, Zhuo W, Yan X, Liu W, Wang F, Chen D, Zhou T. NudCL2 is an Hsp90 cochaperone to regulate sister chromatid cohesion by stabilizing cohesin subunits. Cell Mol Life Sci 2019; 76:381-395. [PMID: 30368549 PMCID: PMC6339671 DOI: 10.1007/s00018-018-2957-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
Sister chromatid cohesion plays a key role in ensuring precise chromosome segregation during mitosis, which is mediated by the multisubunit cohesin complex. However, the molecular regulation of cohesin subunits stability remains unclear. Here, we show that NudCL2 (NudC-like protein 2) is essential for the stability of cohesin subunits by regulating Hsp90 ATPase activity in mammalian cells. Depletion of NudCL2 induces mitotic defects and premature sister chromatid separation and destabilizes cohesin subunits that interact with NudCL2. Similar defects are also observed upon inhibition of Hsp90 ATPase activity. Interestingly, ectopic expression of Hsp90 efficiently rescues the protein instability and functional deficiency of cohesin induced by NudCL2 depletion, but not vice versa. Moreover, NudCL2 not only binds to Hsp90, but also significantly modulates Hsp90 ATPase activity and promotes the chaperone function of Hsp90. Taken together, these data suggest that NudCL2 is a previously undescribed Hsp90 cochaperone to modulate sister chromatid cohesion by stabilizing cohesin subunits, providing a hitherto unrecognized mechanism that is crucial for faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Yuehong Yang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Wei Wang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Min Li
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Ya Gao
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wen Zhang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yuliang Huang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wei Zhuo
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyi Yan
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wei Liu
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dingwei Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China.
| | - Tianhua Zhou
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
17
|
Litwin I, Pilarczyk E, Wysocki R. The Emerging Role of Cohesin in the DNA Damage Response. Genes (Basel) 2018; 9:genes9120581. [PMID: 30487431 PMCID: PMC6316000 DOI: 10.3390/genes9120581] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
18
|
Villa-Hernández S, Bermejo R. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 2018; 64:1005-1013. [PMID: 29549581 DOI: 10.1007/s00294-018-0824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Proliferating cells need to accurately duplicate and pass their genetic material on to daughter cells. Problems during replication and partition challenge the structural and numerical integrity of chromosomes. Diverse mechanisms, as the DNA replication checkpoint, survey the correct progression of replication and couple it with other cell cycle events to preserve genome integrity. The structural maintenance of chromosomes (SMC) cohesin complex primarily contributes to chromosome duplication by mediating the tethering of newly replicated sister chromatids, thus assisting their equal segregation in mitosis. In addition, cohesin exerts important functions in genome organization, gene expression and DNA repair. These are determined by cohesin's ability to bring together different DNA segments and, hence, by the fashion and dynamics of its interaction with chromatin. It recently emerged that cohesin contributes to the protection of stalled replication forks through a mechanism requiring its timely mobilization from unreplicated DNA and relocation to nascent strands. This mechanism relies on DNA replication checkpoint-dependent cohesin ubiquitylation and promotes nascent sister chromatid entrapment, likely contributing to preserve stalled replisome-fork architectural integrity. Here we review how cohesin dynamic association to chromatin is controlled through post-translational modifications to dictate its functions during chromosome duplication. We also discuss recent insights on the mechanism that mediates interfacing of replisome components with chromatin-bound cohesin and its contribution to the establishment of sister chromatid cohesion and the protection of stalled replication forks.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Villa-Hernández S, Bermejo R. Replisome-Cohesin Interfacing: A Molecular Perspective. Bioessays 2018; 40:e1800109. [PMID: 30106480 DOI: 10.1002/bies.201800109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Cohesion is established in S-phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate DNA molecules and review the current knowledge on the architectural-functional organization of the eukaryotic replisome, significantly advanced by recent biochemical and structural studies. In light of this novel insight, the authors discuss the mechanisms proposed to assist interfacing of replisomes with chromatin-bound cohesin complexes and elaborate on models for nascent chromatids entrapment by cohesin in the environment of the replication fork.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| |
Collapse
|
20
|
Srinivasan M, Scheinost JC, Petela NJ, Gligoris TG, Wissler M, Ogushi S, Collier JE, Voulgaris M, Kurze A, Chan KL, Hu B, Costanzo V, Nasmyth KA. The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms. Cell 2018; 173:1508-1519.e18. [PMID: 29754816 PMCID: PMC6371919 DOI: 10.1016/j.cell.2018.04.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 04/10/2018] [Indexed: 11/08/2022]
Abstract
As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs. Thus, cohesin engages chromatin in non-topological, as well as topological, manners. Since hinge mutations, but not Smc-kleisin fusions, abolish entrapment, DNAs may enter cohesin rings through hinge opening. Mutation of three highly conserved lysine residues inside the Smc1 moiety of Smc1/3 hinges abolishes all loading without affecting cohesin's recruitment to CEN loading sites or its ability to hydrolyze ATP. We suggest that loading and translocation are mediated by conformational changes in cohesin's hinge driven by cycles of ATP hydrolysis.
Collapse
Affiliation(s)
| | - Johanna C Scheinost
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Naomi J Petela
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas G Gligoris
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maria Wissler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sugako Ogushi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - James E Collier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Menelaos Voulgaris
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alexander Kurze
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kok-Lung Chan
- Genome Centre, University of Sussex, Sussex House, Brighton BN1 9RH, UK
| | - Bin Hu
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 21139 Milan, Italy
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|