1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Campo A, Aliquò F, Velletri T, Campo S. YRNAs: biosynthesis, structure, functions and involvment in cancer development. Discov Oncol 2025; 16:176. [PMID: 39945971 PMCID: PMC11825425 DOI: 10.1007/s12672-025-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/07/2025] [Indexed: 02/16/2025] Open
Abstract
Y RNAs are a class of highly conserved small non-coding RNAs. Emerging evidences reported that Y RNAs and their Y RNA-derived small RNAs (YsRNAs) represent bioactive molecules and not simply structural RNAs involved in scaffolding and assembling. They can interact and regulate both localization and functions of several RNA-binding proteins implicated in a wide range of cellular processes such as DNA replication, RNA quality control and cellular stress responses. More evidences suggest functional involvement of Y RNAs in several type of disease such as cancer, immune related pathologies, neurological disorders and cardiovascular diseases. Nevertheless, there are many questions that still need to be answered for their functional and mechanistic understanding in a physiological and in a pathological context. In this review we will describe the current state of knowledge about YRNAs, their structure, biogenesis, functions and interaction with known proteins, as well their role in disease. The picture arising indicates their potential function as biomarkers for disease diagnosis, as well as therapeutical targets for building up tailored approaches in personalized medicine.
Collapse
Affiliation(s)
- Adele Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Tania Velletri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy.
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy
| |
Collapse
|
3
|
Gaikwad N, Sarwade R, Halder S, Agarwal G, Seshadri V. HuD regulates apoptosis in N2a cells by regulating Msi2 expression. PLoS One 2024; 19:e0315535. [PMID: 39680531 DOI: 10.1371/journal.pone.0315535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
HuD plays a critical role in neurite outgrowth, neuronal plasticity, and survival. However, HuD autoantibodies from patients with paraneoplastic gut dysmotility can trigger the apoptotic cascade in human neuroblastoma cell line and myenteric neurons. The mechanism by which HuD regulates the apoptotic pathway is unclear. Apoptosis is one of the underlying causes of neurodegenerative diseases like Alzheimer's disease. In the current study, we found that HuD interacts with Msi2 transcript and positively regulates it in the mouse neuroblastoma (N2a) cells. MSI2 being an RNA binding protein has diverse mRNA targets and regulates the mitochondrial apoptotic pathway by interacting with and repressing APAF1 transcript. Conversely, the reduced levels of HuD leads to decreased Msi2 expression and increased APAF1 levels, which results in apoptosis in N2a cells. Overall, our research indicates that HuD and Msi2 possess an anti-apoptotic role in N2A cells.
Collapse
Affiliation(s)
- Naina Gaikwad
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Rucha Sarwade
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sourav Halder
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gaurav Agarwal
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | | |
Collapse
|
4
|
Sharma G, Paganin M, Lauria F, Perenthaler E, Viero G. The SMN-ribosome interplay: a new opportunity for Spinal Muscular Atrophy therapies. Biochem Soc Trans 2024; 52:465-479. [PMID: 38391004 PMCID: PMC10903476 DOI: 10.1042/bst20231116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The underlying cause of Spinal Muscular Atrophy (SMA) is in the reduction of survival motor neuron (SMN) protein levels due to mutations in the SMN1 gene. The specific effects of SMN protein loss and the resulting pathological alterations are not fully understood. Given the crucial roles of the SMN protein in snRNP biogenesis and its interactions with ribosomes and translation-related proteins and mRNAs, a decrease in SMN levels below a specific threshold in SMA is expected to affect translational control of gene expression. This review covers both direct and indirect SMN interactions across various translation-related cellular compartments and processes, spanning from ribosome biogenesis to local translation and beyond. Additionally, it aims to outline deficiencies and alterations in translation observed in SMA models and patients, while also discussing the implications of the relationship between SMN protein and the translation machinery within the context of current and future therapies.
Collapse
|
5
|
Driedonks TAP, Ressel S, Tran Ngoc Minh T, Buck AH, Nolte‐‘t Hoen ENM. Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e123. [PMID: 38938676 PMCID: PMC11080805 DOI: 10.1002/jex2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 06/29/2024]
Abstract
Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.
Collapse
Affiliation(s)
- Tom A. P. Driedonks
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department CDL ResearchUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thi Tran Ngoc Minh
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Amy H. Buck
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Esther N. M. Nolte‐‘t Hoen
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
6
|
Li S, Lv J, Zhang X, Zhang Q, Li Z, Lu J, Huo X, Guo M, Liu X, Gao R, Gong J, Li C, Li W, Zhang T, Wang J, Chen Z, Du X. ELAVL4 promotes the tumorigenesis of small cell lung cancer by stabilizing LncRNA LYPLAL1-DT and enhancing profilin 2 activation. FASEB J 2023; 37:e23170. [PMID: 37676718 DOI: 10.1096/fj.202300314rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Small cell lung cancer (SCLC) is one of the most malignant tumors that has an extremely poor prognosis. RNA-binding protein (RBP) and long noncoding RNA (lncRNA) have been shown to be key regulators during tumorigenesis as well as lung tumor progression. However, the role of RBP ELAVL4 and lncRNA LYPLAL1-DT in SCLC remains unclear. In this study, we verified that lncRNA LYPLAL1-DT acts as an SCLC oncogenic lncRNA and was confirmed in vitro and in vivo. Mechanistically, LYPLAL1-DT negatively regulates the expression of miR-204-5p, leading to the upregulation of PFN2, thus, promoting SCLC cell proliferation, migration, and invasion. ELAVL4 has been shown to enhance the stability of LYPLAL1-DT and PFN2 mRNA. Our study reveals a regulatory pathway, where ELAVL4 stabilizes PFN2 and LYPLAL1-DT with the latter further increasing PFN2 expression by blocking the action of miR-204-5p. Upregulated PFN2 ultimately promotes tumorigenesis and invasion in SCLC. These findings provide novel prognostic indicators as well as promising new therapeutic targets for SCLC.
Collapse
Affiliation(s)
- Shuxin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xing Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Qiuyu Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Zhihui Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jianan Gong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Weiying Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| |
Collapse
|
7
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Marchesi N, Linciano P, Campagnoli LIM, Fahmideh F, Rossi D, Costa G, Ambrosio FA, Barbieri A, Collina S, Pascale A. Short- and Long-Term Regulation of HuD: A Molecular Switch Mediated by Folic Acid? Int J Mol Sci 2023; 24:12201. [PMID: 37569576 PMCID: PMC10418318 DOI: 10.3390/ijms241512201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Pasquale Linciano
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | | | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | - Giosuè Costa
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (G.C.); (F.A.A.)
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, 88055 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (G.C.); (F.A.A.)
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry Section, University of Pavia, 27100 Pavia, Italy; (P.L.); (D.R.); (S.C.)
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (L.I.M.C.); (F.F.); (A.B.)
| |
Collapse
|
9
|
Jung J, Ohk J, Kim H, Holt CE, Park HJ, Jung H. mRNA transport, translation, and decay in adult mammalian central nervous system axons. Neuron 2023; 111:650-668.e4. [PMID: 36584679 DOI: 10.1016/j.neuron.2022.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/30/2022]
Abstract
Localized mRNA translation regulates synapse function and axon maintenance, but how compartment-specific mRNA repertoires are regulated is largely unknown. We developed an axonal transcriptome capture method that allows deep sequencing of metabolically labeled mRNAs from retinal ganglion cell axon terminals in mouse. Comparing axonal-to-somal transcriptomes and axonal translatome-to-transcriptome enables genome-wide visualization of mRNA transport and translation and unveils potential regulators tuned to each process. FMRP and TDP-43 stand out as key regulators of transport, and experiments in Fmr1 knockout mice validate FMRP's role in the axonal transportation of synapse-related mRNAs. Pulse-and-chase experiments enable genome-wide assessment of mRNA stability in axons and reveal a strong coupling between mRNA translation and decay. Measuring the absolute mRNA abundance per axon terminal shows that the adult axonal transcriptome is stably maintained by persistent transport. Our datasets provide a rich resource for unique insights into RNA-based mechanisms in maintaining presynaptic structure and function in vivo.
Collapse
Affiliation(s)
- Jane Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hyun Jung Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Hilgers V. Regulation of neuronal RNA signatures by ELAV/Hu proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1733. [PMID: 35429136 DOI: 10.1002/wrna.1733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding proteins encoded by the highly conserved elav/Hu gene family, found in all metazoans, regulate the expression of a wide range of genes, at both the co-transcriptional and posttranscriptional level. Nervous-system-specific ELAV/Hu proteins are prominent for their essential role in neuron differentiation, and mutations have been associated with human neurodevelopmental and neurodegenerative diseases. Drosophila ELAV, the founding member of the protein family, mediates the synthesis of neuronal RNA signatures by promoting alternative splicing and alternative polyadenylation of hundreds of genes. The recent identification of ELAV's direct RNA targets revealed the protein's central role in shaping the neuronal transcriptome, and highlighted the importance of neuronal transcript signatures for neuron maintenance and organism survival. Animals have evolved multiple cellular mechanisms to ensure robustness of ELAV/Hu function. In Drosophila, elav autoregulates in a 3'UTR-dependent manner to maintain optimal protein levels. A complete absence of ELAV causes the activation and nuclear localization of the normally cytoplasmic paralogue FNE, in a process termed EXon-Activated functional Rescue (EXAR). Other species, including mammals, seem to utilize different strategies, such as protein redundancy, to maintain ELAV protein function and effectively safeguard the identity of the neuronal transcriptome. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Development RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
11
|
Digital color-coded molecular barcoding reveals dysregulation of common FUS and FMRP targets in soma and neurites of ALS mutant motoneurons. Cell Death Dis 2023; 9:33. [PMID: 36702823 PMCID: PMC9879958 DOI: 10.1038/s41420-023-01340-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Mutations in RNA binding proteins (RBPs) have been linked to the motor neuron disease amyotrophic lateral sclerosis (ALS). Extensive auto-regulation, cross-regulation, cooperation and competition mechanisms among RBPs are in place to ensure proper expression levels of common targets, often including other RBPs and their own transcripts. Moreover, several RBPs play a crucial role in the nervous system by localizing target RNAs in specific neuronal compartments. These include the RBPs FUS, FMRP, and HuD. ALS mutations in a given RBP are predicted to produce a broad impact on such delicate equilibrium. Here we studied the effects of the severe FUS-P525L mutation on common FUS and FMRP targets. Expression profiling by digital color-coded molecular barcoding in cell bodies and neurites of human iPSC-derived motor neurons revealed altered levels of transcripts involved in the cytoskeleton, neural projection and synapses. One of the common targets is HuD, which is upregulated because of the loss of FMRP binding to its 3'UTR due to mutant FUS competition. Notably, many genes are commonly altered upon FUS mutation or HuD overexpression, suggesting that a substantial part of the effects of mutant FUS on the motor neuron transcriptome could be due to HuD gain-of-function. Among altered transcripts, we also identified other common FUS and FMRP targets, namely MAP1B, PTEN, and AP2B1, that are upregulated upon loss of FMRP binding on their 3'UTR in FUS-P525L motor neurons. This work demonstrates that the impairment of FMRP function by mutant FUS might alter the expression of several genes, including new possible biomarkers and therapeutic targets for ALS.
Collapse
|
12
|
Estravís M, García-Sánchez A, Martin MJ, Pérez-Pazos J, Isidoro-García M, Dávila I, Sanz C. RNY3 modulates cell proliferation and IL13 mRNA levels in a T lymphocyte model: a possible new epigenetic mechanism of IL-13 regulation. J Physiol Biochem 2023; 79:59-69. [PMID: 36089628 PMCID: PMC9905197 DOI: 10.1007/s13105-022-00920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Allergic asthma is the most common type of asthma. It is characterized by TH2 cell-driven inflammation in which interleukin-13 (IL-13) plays a pivotal role. Cytoplasmic RNAs (Y-RNAs), a variety of non-coding RNAs that are dysregulated in many cancer types, are also differentially expressed in patients with allergic asthma. Their function in the development of the disease is still unknown. We investigated the potential role of RNY3 RNA (hY3) in the TH2 cell inflammatory response using the Jurkat cell line as a model. hY3 expression levels were modulated to mimic the upregulation effect in allergic disease. We evaluated the effect of hY3 over cell stimulation and the expression of the TH2 cytokine IL13. Total RNA was isolated and retrotranscribed, and RNA levels were assessed by qPCR. In Jurkat cells, hY3 levels increased upon stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. When transfecting with high levels of hY3 mimic molecules, cell proliferation rate decreased while IL13 mRNA levels increased upon stimulation compared to stimulated control cells. Our results show the effect of increased hY3 levels on cell proliferation and the levels of IL13 mRNA in Jurkat cells. Also, we showed that hY3 could act over other cells via exosomes. This study opens up new ways to study the potential regulatory function of hY3 over IL-13 production and its implications for asthma development.
Collapse
Affiliation(s)
- Miguel Estravís
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
| | - Asunción García-Sánchez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain.
- Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain.
| | - Maria J Martin
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Jacqueline Pérez-Pazos
- Unidad de Farmacogenética y Medicina de Precisión, Servicio de Bioquímica Clínica, Servicio de Alergología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - María Isidoro-García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Servicio de Bioquímica Clínica, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Ignacio Dávila
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain
- Servicio de Inmunoalergia, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Catalina Sanz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
13
|
RNA binding protein HuD mediates the crosstalk between β cells and islet endothelial cells by the regulation of Endostatin and Serpin E1 expression. Cell Death Dis 2022; 13:1019. [PMID: 36470872 PMCID: PMC9722926 DOI: 10.1038/s41419-022-05465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RNA binding protein HuD plays essential roles in gene expression by regulating RNA metabolism, and its dysregulation is involved in the pathogenesis of several diseases, including tumors, neurodegenerative diseases, and diabetes. Here, we explored HuD-mediated differential expression of secretory proteins in mouse insulinoma βTC6 cells using a cytokine array. Endostatin and Serpin E1 that play anti-angiogenic roles were identified as differentially expressed proteins by HuD. HuD knockdown increased the expression of α chain of collagen XVIII (Col18a1), a precursor form of endostatin, and Serpin E1 by associating with the 3'-untranslated regions (UTRs) of Col18a1 and Serpin E1 mRNAs. Reporter analysis revealed that HuD knockdown increased the translation of EGFP reporters containing 3'UTRs of Col18a1 and Serpin E1 mRNAs, which suggests the role of HuD as a translational repressor. Co-cultures of βTC6 cells and pancreatic islet endothelial MS1 cells were used to assess the crosstalk between β cells and islet endothelial cells, and the results showed that HuD downregulation in βTC6 cells inhibited the growth and migration of MS1 cells. Ectopic expression of HuD decreased Col18a1 and Serpin E1 expression, while increasing the markers of islet vascular cells in the pancreas of db/db mice. Taken together, these results suggest that HuD has the potential to regulate the crosstalk between β cells and islet endothelial cells by regulating Endostatin and Serpin E1 expression, thereby contributing to the maintenance of homeostasis in the islet microenvironment.
Collapse
|
14
|
Silvestri B, Mochi M, Garone MG, Rosa A. Emerging Roles for the RNA-Binding Protein HuD (ELAVL4) in Nervous System Diseases. Int J Mol Sci 2022; 23:14606. [PMID: 36498933 PMCID: PMC9736382 DOI: 10.3390/ijms232314606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The main goal of this review is to provide an updated overview of the involvement of the RNA-binding protein (RBP) HuD, encoded by the ELAVL4 gene, in nervous system development, maintenance, and function, and its emerging role in nervous system diseases. A particular focus is on recent studies reporting altered HuD levels, or activity, in disease models and patients. Substantial evidence suggests HuD involvement in Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Interestingly, while possible disease-causing mutations in the ELAVL4 gene remain elusive, a common theme in these diseases seems to be the altered regulation of HuD at multiple steps, including post-transcriptional and post-translational levels. In turn, the changed activity of HuD can have profound implications for its target transcripts, which are overly stabilized in case of HuD gain of function (as proposed in PD and ALS) or reduced in case of decreased HuD binding (as suggested by some studies in AD). Moreover, the recent discovery that HuD is a component of pathological cytoplasmic inclusion in both familial and sporadic ALS patients might help uncover the common molecular mechanisms underlying such complex diseases. We believe that deepening our understanding of the involvement of HuD in neurodegeneration could help developing new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Beatrice Silvestri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Michela Mochi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Giovanna Garone
- Department of Stem Cell Biology, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Alessandro Rosa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| |
Collapse
|
15
|
Carrasco J, Mateos F, Hilgers V. A critical developmental window for ELAV/Hu-dependent mRNA signatures at the onset of neuronal differentiation. Cell Rep 2022; 41:111542. [PMID: 36288718 PMCID: PMC9631114 DOI: 10.1016/j.celrep.2022.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022] Open
Abstract
Cell-type-specific gene regulatory programs are essential for cell differentiation and function. In animal neurons, the highly conserved ELAV/Hu family of proteins promotes alternative splicing and polyadenylation of mRNA precursors to create unique neuronal transcript isoforms. Here, we assess transcriptome profiles and neurogenesis success in Drosophila models engineered to express differing levels of ELAV activity in the course of development. We show that the ELAV-mediated establishment of a subset of neuronal mRNA isoforms at the onset of neuron differentiation constitutes a developmental bottleneck that cannot be overcome later by the nuclear activation of the paralog found in neurons (FNE). Loss of ELAV function outside of that critical time window results in neurological defects. We find that FNE, when activated early enough, can restore ELAV-dependent neuronal mRNA isoforms and fully rescue development. Our findings demonstrate the essential role of robust cellular strategies to maintain ELAV activity and intact neuronal signatures in neurogenesis and neuronal function.
Collapse
Affiliation(s)
- Judit Carrasco
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Fernando Mateos
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
16
|
Ambrosini C, Destefanis E, Kheir E, Broso F, Alessandrini F, Longhi S, Battisti N, Pesce I, Dassi E, Petris G, Cereseto A, Quattrone A. Translational enhancement by base editing of the Kozak sequence rescues haploinsufficiency. Nucleic Acids Res 2022; 50:10756-10771. [PMID: 36165847 PMCID: PMC9561285 DOI: 10.1093/nar/gkac799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
A variety of single-gene human diseases are caused by haploinsufficiency, a genetic condition by which mutational inactivation of one allele leads to reduced protein levels and functional impairment. Translational enhancement of the spare allele could exert a therapeutic effect. Here we developed BOOST, a novel gene-editing approach to rescue haploinsufficiency loci by the change of specific single nucleotides in the Kozak sequence, which controls translation by regulating start codon recognition. We evaluated for translational strength 230 Kozak sequences of annotated human haploinsufficient genes and 4621 derived variants, which can be installed by base editing, by a high-throughput reporter assay. Of these variants, 149 increased the translation of 47 Kozak sequences, demonstrating that a substantial proportion of haploinsufficient genes are controlled by suboptimal Kozak sequences. Validation of 18 variants for 8 genes produced an average enhancement in an expression window compatible with the rescue of the genetic imbalance. Base editing of the NCF1 gene, whose monoallelic loss causes chronic granulomatous disease, resulted in the desired increase of NCF1 (p47phox) protein levels in a relevant cell model. We propose BOOST as a fine-tuned approach to modulate translation, applicable to the correction of dozens of haploinsufficient monogenic disorders independently of the causing mutation.
Collapse
Affiliation(s)
- Chiara Ambrosini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Eyemen Kheir
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Federica Alessandrini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Sara Longhi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Nicolò Battisti
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Isabella Pesce
- Cell Analysis and Separation Core Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge CB2 0QH, UK
| | - Anna Cereseto
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
17
|
Chan JNM, Sánchez-Vidaña DI, Anoopkumar-Dukie S, Li Y, Benson Wui-Man L. RNA-binding protein signaling in adult neurogenesis. Front Cell Dev Biol 2022; 10:982549. [PMID: 36187492 PMCID: PMC9523427 DOI: 10.3389/fcell.2022.982549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The process of neurogenesis in the brain, including cell proliferation, differentiation, survival, and maturation, results in the formation of new functional neurons. During embryonic development, neurogenesis is crucial to produce neurons to establish the nervous system, but the process persists in certain brain regions during adulthood. In adult neurogenesis, the production of new neurons in the hippocampus is accomplished via the division of neural stem cells. Neurogenesis is regulated by multiple factors, including gene expression at a temporal scale and post-transcriptional modifications. RNA-binding Proteins (RBPs) are known as proteins that bind to either double- or single-stranded RNA in cells and form ribonucleoprotein complexes. The involvement of RBPs in neurogenesis is crucial for modulating gene expression changes and posttranscriptional processes. Since neurogenesis affects learning and memory, RBPs are closely associated with cognitive functions and emotions. However, the pathways of each RBP in adult neurogenesis remain elusive and not clear. In this review, we specifically summarize the involvement of several RBPs in adult neurogenesis, including CPEB3, FXR2, FMRP, HuR, HuD, Lin28, Msi1, Sam68, Stau1, Smaug2, and SOX2. To understand the role of these RBPs in neurogenesis, including cell proliferation, differentiation, survival, and maturation as well as posttranscriptional gene expression, we discussed the protein family, structure, expression, functional domain, and region of action. Therefore, this narrative review aims to provide a comprehensive overview of the RBPs, their function, and their role in the process of adult neurogenesis as well as to identify possible research directions on RBPs and neurogenesis.
Collapse
Affiliation(s)
- Jackie Ngai-Man Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Dalinda Isabel Sánchez-Vidaña
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lau Benson Wui-Man
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Lau Benson Wui-Man,
| |
Collapse
|
18
|
Lu X, Xu Q, Tong Y, Zhang Z, Dun G, Feng Y, Tang J, Han D, Mao Y, Deng L, He X, Li Q, Xiang Y, Wang F, Zeng D, Tang B, Mao X. Long non-coding RNA EVADR induced by Fusobacterium nucleatum infection promotes colorectal cancer metastasis. Cell Rep 2022; 40:111127. [PMID: 35858553 DOI: 10.1016/j.celrep.2022.111127] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022] Open
Abstract
Both Fusobacterium nucleatum (F. nucleatum) and long non-coding RNA (lncRNA) EVADR are associated with colorectal cancer (CRC), but their relationship with CRC metastasis and the mechanisms by which EVADR promotes CRC metastasis are poorly understood. Here, we report that F. nucleatum promotes colorectal cancer cell metastasis to the liver and lung and that it can be detected in CRC-metastasis colonization in mouse models. Furthermore, F. nucleatum upregulates the expression of EVADR, which can increase the metastatic ability of CRC cells in vivo and in vitro. Mechanistically, elevated EVADR serves as a modular scaffold for the Y-box binding protein 1 (YBX1) to directly enhance the translation of epithelial-mesenchymal transition (EMT)-related factors, such as Snail, Slug, and Zeb1. These findings suggest that EVADR induced by F. nucleatum promotes colorectal cancer metastasis through YBX1-dependent translation. The EVADR-YBX1 axis may be useful for the prevention and treatment of patients with F. nucleatum-associated CRC metastasis.
Collapse
Affiliation(s)
- Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiaolin Xu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yanan Tong
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhujun Zhang
- Department of Hospital Infection Control, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guodong Dun
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuyang Feng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Dan Han
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yilan Mao
- Class of 2021 Undergraduate, Nursing College of Chongqing Medical University, Chongqing 400016, China
| | - Ling Deng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoyi He
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Xiang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - FengChao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dongzhu Zeng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Bin Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
19
|
Van Bortle K, Marciano DP, Liu Q, Chou T, Lipchik AM, Gollapudi S, Geller BS, Monte E, Kamakaka RT, Snyder MP. A cancer-associated RNA polymerase III identity drives robust transcription and expression of snaR-A noncoding RNA. Nat Commun 2022; 13:3007. [PMID: 35637192 PMCID: PMC9151912 DOI: 10.1038/s41467-022-30323-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase III (Pol III) includes two alternate isoforms, defined by mutually exclusive incorporation of subunit POLR3G (RPC7α) or POLR3GL (RPC7β), in mammals. The contributions of POLR3G and POLR3GL to transcription potential has remained poorly defined. Here, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. Particularly sensitive is snaR-A, a small noncoding RNA implicated in cancer proliferation and metastasis. Analysis of Pol III isoform biases and downstream chromatin features identifies loss of POLR3G and snaR-A during differentiation, and conversely, re-establishment of POLR3G gene expression and SNAR-A gene features in cancer contexts. Our results support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor. RNA polymerase III changes its subunit composition during mammalian development. Here the authors report that loss of subunit POLR3G, which re-emerges in cancer, promotes expression of small NF90-associated RNA (snaR-A), a noncoding RNA implicated in cell proliferation and metastasis.
Collapse
|
20
|
Loss of RNA binding protein HuD facilitates the production of the senescence-associated secretory phenotype. Cell Death Dis 2022; 13:329. [PMID: 35411051 PMCID: PMC9001635 DOI: 10.1038/s41419-022-04792-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
HuD, an RNA binding protein, plays a role in the regulation of gene expression in certain types of cells, including neuronal cells and pancreatic β-cells, via RNA metabolism. Its aberrant expression is associated with the pathogenesis of several human diseases. To explore HuD-mediated gene regulation, stable cells expressing short hairpin RNA against HuD were established using mouse neuroblastoma Neuro2a (N2a) cells, which displayed enhanced phenotypic characteristics of cellular senescence. Two approaches, RNA immunoprecipitation (RNA IP)-NanoString profiling and cytokine array, were used to subsequently identify a subset of putative HuD targets that act as senescence-associated secretory phenotype (SASP), including C-C motif ligand 2 (CCL2), CCL20, C-X-C motif chemokine ligand 2 (CXCL2), and interleukin-6 (IL-6). Here, we further demonstrated that HuD regulates the expression of CCL2, a SASP candidate upregulated in cells following HuD knockdown, by binding to the 3′-untranslated region (UTR) of Ccl2 mRNA. Downregulation of HuD increased the level of CCL2 in N2a cells and the brain tissues of HuD knockout (KO) mice. Exposure to γ-irradiation induced cellular senescence in N2a cells and HuD knockdown facilitated stress-induced cellular senescence. Our results reveal that HuD acts as a novel regulator of CCL2 expression, and its aberrant expression may contribute to cellular senescence by regulating SASP production.
Collapse
|
21
|
Bishayee K, Habib K, Nazim UM, Kang J, Szabo A, Huh SO, Sadra A. RNA binding protein HuD promotes autophagy and tumor stress survival by suppressing mTORC1 activity and augmenting ARL6IP1 levels. J Exp Clin Cancer Res 2022; 41:18. [PMID: 35012594 PMCID: PMC8744261 DOI: 10.1186/s13046-021-02203-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Neuronal-origin HuD (ELAVL4) is an RNA binding protein overexpressed in neuroblastoma (NB) and certain other cancers. The RNA targets of this RNA binding protein in neuroblastoma cells and their role in promoting cancer survival have been unexplored. In the study of modulators of mTORC1 activity under the conditions of optimal cell growth and starvation, the role of HuD and its two substrates were studied. Methods RNA immunoprecipitation/sequencing (RIP-SEQ) coupled with quantitative real-time PCR were used to identify substrates of HuD in NB cells. Validation of the two RNA targets of HuD was via reverse capture of HuD by synthetic RNA oligoes from cell lysates and binding of RNA to recombinant forms of HuD in the cell and outside of the cell. Further analysis was via RNA transcriptome analysis of HuD silencing in the test cells. Results In response to stress, HuD was found to dampen mTORC1 activity and allow the cell to upregulate its autophagy levels by suppressing mTORC1 activity. Among mRNA substrates regulated cell-wide by HuD, GRB-10 and ARL6IP1 were found to carry out critical functions for survival of the cells under stress. GRB-10 was involved in blocking mTORC1 activity by disrupting Raptor-mTOR kinase interaction. Reduced mTORC1 activity allowed lifting of autophagy levels in the cells required for increased survival. In addition, ARL6IP1, an apoptotic regulator in the ER membrane, was found to promote cell survival by negative regulation of apoptosis. As a therapeutic target, knockdown of HuD in two xenograft models of NB led to a block in tumor growth, confirming its importance for viability of the tumor cells. Cell-wide RNA messages of these two HuD substrates and HuD and mTORC1 marker of activity significantly correlated in NB patient populations and in mouse xenografts. Conclusions HuD is seen as a novel means of promoting stress survival in this cancer type by downregulating mTORC1 activity and negatively regulating apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02203-2.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Khadija Habib
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Uddin Md Nazim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea
| | - Aniko Szabo
- Department of Anatomy, Alfaisal University, College of Medicine, Riyadh, Kingdom of Saudi Arabia
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea.
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
22
|
Ding P, Chen W, Yan X, Zhang J, Li C, Zhang G, Wang Y, Li Y. BMPER alleviates ischemic brain injury by protecting neurons and inhibiting neuroinflammation via Smad3-Akt-Nrf2 pathway. CNS Neurosci Ther 2021; 28:593-607. [PMID: 34904361 PMCID: PMC8928915 DOI: 10.1111/cns.13782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Bone morphogenetic proteins (BMPs) are a group of proteins related to bone morphogenesis. BMP‐binding endothelial regulator (BMPER), a secreted protein that interacts with BMPs, is known to be involved in ischemic injuries. Here, we explored the effects of BMPER on cerebral ischemia and its mechanism of action. Methods A mouse model of brain ischemia was induced by middle cerebral artery occlusion (MCAO). An in vitro ischemic model was established by subjecting primary cultured neurons to oxygen‐glucose deprivation/reperfusion (OGD/R). Serum levels of BMPs/BMPER were measured in MCAO mice and in patients with acute ischemic stroke (AIS). Brain damages were compared between BMPER‐ and vehicle‐treated mice. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence staining were performed to examine neuroinflammation and cell death. BMPER‐related pathways were assessed by Western blotting. Results BMPER level was elevated in MCAO mice and AIS patients. BMPER administration reduced mortality, infarct size, brain edema, and neurological deficit after MCAO. Neuroinflammation and cell death after ischemia were alleviated by BMPER both in vivo and in vitro. BMPER activated the Smad3/Akt/Nrf2 pathway in OGD/R‐challenged neurons. Conclusion BMPER is a neuroprotective hormone that alleviates ischemic brain injury via activating the Smad3/Akt/Nrf2 pathway. These findings may provide potential therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Peng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Anesthesiology, PLA 983 Hospital, Tianjin, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaodi Yan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinxiang Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Regulation of mRNA translation in stem cells; links to brain disorders. Cell Signal 2021; 88:110166. [PMID: 34624487 DOI: 10.1016/j.cellsig.2021.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
Translational control of gene expression is emerging as a cardinal step in the regulation of protein abundance. Especially for embryonic (ESC) and neuronal stem cells (NSC), regulation of mRNA translation is involved in the maintenance of pluripotency but also differentiation. For neuronal stem cells this regulation is linked to the various neuronal subtypes that arise in the developing brain and is linked to numerous brain disorders. Herein, we review translational control mechanisms in ESCs and NSCs during development and differentiation, and briefly discuss their link to brain disorders.
Collapse
|
24
|
Ianniello Z, Sorci M, Ceci Ginistrelli L, Iaiza A, Marchioni M, Tito C, Capuano E, Masciarelli S, Ottone T, Attrotto C, Rizzo M, Franceschini L, de Pretis S, Voso MT, Pelizzola M, Fazi F, Fatica A. New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia. Cell Death Dis 2021; 12:870. [PMID: 34561421 PMCID: PMC8463696 DOI: 10.1038/s41419-021-04169-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the presence of tyrosine kinase BCR-ABL1 fusion protein, which deregulate transcription and mRNA translation. Tyrosine kinase inhibitors (TKIs) are the first-choice treatment. However, resistance to TKIs remains a challenge to cure CML patients. Here, we reveal that the m6A methyltransferase complex METTL3/METTL14 is upregulated in CML patients and that is required for proliferation of primary CML cells and CML cell lines sensitive and resistant to the TKI imatinib. We demonstrate that depletion of METTL3 strongly impairs global translation efficiency. In particular, our data show that METTL3 is crucial for the expression of genes involved in ribosome biogenesis and translation. Specifically, we found that METTL3 directly regulates the level of PES1 protein identified as an oncogene in several tumors. We propose a model in which nuclear METTL3/METTL14 methyltransferase complex modified nascent transcripts whose translation is enhanced by cytoplasmic localization of METTL3, independently from its catalytic activity. In conclusion, our results point to METTL3 as a novel relevant oncogene in CML and as a promising therapeutic target for TKI resistant CML.
Collapse
Affiliation(s)
- Zaira Ianniello
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Melissa Sorci
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Lavinia Ceci Ginistrelli
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Marcella Marchioni
- Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Ernestina Capuano
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.,Histology and Embryology Section, Department of Life Science and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Cristina Attrotto
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Stefano de Pretis
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy. .,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Garone MG, Birsa N, Rosito M, Salaris F, Mochi M, de Turris V, Nair RR, Cunningham TJ, Fisher EMC, Morlando M, Fratta P, Rosa A. ALS-related FUS mutations alter axon growth in motoneurons and affect HuD/ELAVL4 and FMRP activity. Commun Biol 2021; 4:1025. [PMID: 34471224 PMCID: PMC8410767 DOI: 10.1038/s42003-021-02538-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicol Birsa
- UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Maria Rosito
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Federico Salaris
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Michela Mochi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | | | | | - Mariangela Morlando
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Perugia, Italy
| | - Pietro Fratta
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy.
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
26
|
Bowles KR, Silva MC, Whitney K, Bertucci T, Berlind JE, Lai JD, Garza JC, Boles NC, Mahali S, Strang KH, Marsh JA, Chen C, Pugh DA, Liu Y, Gordon RE, Goderie SK, Chowdhury R, Lotz S, Lane K, Crary JF, Haggarty SJ, Karch CM, Ichida JK, Goate AM, Temple S. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell 2021; 184:4547-4563.e17. [PMID: 34314701 PMCID: PMC8635409 DOI: 10.1016/j.cell.2021.07.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kristen Whitney
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA; Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | | | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Amgen Research, One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Jacob C Garza
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin H Strang
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA; Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | - Jacob A Marsh
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Cynthia Chen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Derian A Pugh
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ronald E Gordon
- Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | | | | | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Keith Lane
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
27
|
Misiak D, Hagemann S, Bell JL, Busch B, Lederer M, Bley N, Schulte JH, Hüttelmaier S. The MicroRNA Landscape of MYCN-Amplified Neuroblastoma. Front Oncol 2021; 11:647737. [PMID: 34026620 PMCID: PMC8138323 DOI: 10.3389/fonc.2021.647737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/15/2021] [Indexed: 02/01/2023] Open
Abstract
MYCN gene amplification and upregulated expression are major hallmarks in the progression of high-risk neuroblastoma. MYCN expression and function in modulating gene synthesis in neuroblastoma is controlled at virtually every level, including poorly understood regulation at the post-transcriptional level. MYCN modulates the expression of various microRNAs including the miR-17-92 cluster. MYCN mRNA expression itself is subjected to the control by miRNAs, most prominently the miR-17-92 cluster that balances MYCN expression by feed-back regulation. This homeostasis seems disturbed in neuroblastoma where MYCN upregulation coincides with severely increased expression of the miR-17-92 cluster. In the presented study, we applied high-throughput next generation sequencing to unravel the miRNome in a cohort of 97 neuroblastomas, representing all clinical stages. Aiming to reveal the MYCN-dependent miRNome, we evaluate miRNA expression in MYCN-amplified as well as none amplified tumor samples. In correlation with survival data analysis of differentially expressed miRNAs, we present various putative oncogenic as well as tumor suppressive miRNAs in neuroblastoma. Using microRNA trapping by RNA affinity purification, we provide a comprehensive view of MYCN-regulatory miRNAs in neuroblastoma-derived cells, confirming a pivotal role of the miR-17-92 cluster and moderate association by the let-7 miRNA family. Attempting to decipher how MYCN expression escapes elevated expression of inhibitory miRNAs, we present evidence that RNA-binding proteins like the IGF2 mRNA binding protein 1 reduce miRNA-directed downregulation of MYCN in neuroblastoma. Our findings emphasize the potency of post-transcriptional regulation of MYCN in neuroblastoma and unravel new avenues to pursue inhibition of this potent oncogene.
Collapse
Affiliation(s)
- Danny Misiak
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica L. Bell
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Busch
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Charité Berlin, Berlin, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
28
|
RNA-Binding Protein HuD as a Versatile Factor in Neuronal and Non-Neuronal Systems. BIOLOGY 2021; 10:biology10050361. [PMID: 33922479 PMCID: PMC8145660 DOI: 10.3390/biology10050361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Tight regulation of gene expression is critical for various biological processes such as proliferation, development, differentiation, and death; its dysregulation is linked to the pathogenesis of diseases. Gene expression is dynamically regulated by numerous factors at DNA, RNA, and protein levels, and RNA binding proteins (RBPs) and non–coding RNAs play important roles in the regulation of RNA metabolisms. RBPs govern a diverse spectrum of RNA metabolism by recognizing and binding to the secondary structure or the certain sequence of target mRNAs, and their malfunctions caused by aberrant expression or mutation are implicated in disease pathology. HuD, an RBP in the human antigen (Hu) family, has been studied as a pivotal regulator of gene expression in neuronal systems; however, accumulating evidence reveals the significance of HuD in non–neuronal systems including certain types of cancer cells or endocrine cells in the lung, pancreas, and adrenal gland. In addition, the abnormal function of HuD suggests its pathological association with neurological disorders, cancers, and diabetes. Thus, this review discusses HuD–mediated gene regulation in neuronal and non–neuronal systems to address how it works to orchestrate gene expression and how its expression is controlled in the stress response of pathogenesis of diseases. Abstract HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.
Collapse
|
29
|
Minati L, Firrito C, Del Piano A, Peretti A, Sidoli S, Peroni D, Belli R, Gandolfi F, Romanel A, Bernabo P, Zasso J, Quattrone A, Guella G, Lauria F, Viero G, Clamer M. One-shot analysis of translated mammalian lncRNAs with AHARIBO. eLife 2021; 10:59303. [PMID: 33594971 PMCID: PMC7932693 DOI: 10.7554/elife.59303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
A vast portion of the mammalian genome is transcribed as long non-coding RNAs (lncRNAs) acting in the cytoplasm with largely unknown functions. Surprisingly, lncRNAs have been shown to interact with ribosomes, encode peptides, or act as ribosome sponges. These functions still remain mostly undetected and understudied owing to the lack of efficient tools for genome-wide simultaneous identification of ribosome-associated and peptide-producing lncRNAs. Here, we present AHA-mediated RIBOsome isolation (AHARIBO), a method for the detection of lncRNAs either untranslated, but associated with ribosomes, or encoding small peptides. Using AHARIBO in mouse embryonic stem cells during neuronal differentiation, we isolated ribosome-protected RNA fragments, translated RNAs, and corresponding de novo synthesized peptides. Besides identifying mRNAs under active translation and associated ribosomes, we found and distinguished lncRNAs acting as ribosome sponges or encoding micropeptides, laying the ground for a better functional understanding of hundreds of lncRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Daniele Peroni
- Mass Spectrometry Facility, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Romina Belli
- Mass Spectrometry Facility, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Gandolfi
- Laboratory of Bioinformatics and Computational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Jacopo Zasso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | | | | |
Collapse
|
30
|
Lu JX, Wang Y, Zhang YJ, Shen MF, Li HY, Yu ZQ, Chen G. Axonal mRNA localization and local translation in neurodegenerative disease. Neural Regen Res 2021; 16:1950-1957. [PMID: 33642365 PMCID: PMC8343310 DOI: 10.4103/1673-5374.308074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulation of mRNA localization and local translation play vital roles in the maintenance of cellular structure and function. Many human neurodegenerative diseases, such as fragile X syndrome, amyotrophic lateral sclerosis, Alzheimer's disease, and spinal muscular atrophy, have been characterized by pathological changes in neuronal axons, including abnormal mRNA translation, the loss of protein expression, or abnormal axon transport. Moreover, the same protein and mRNA molecules have been associated with variable functions in different diseases due to differences in their interaction networks. In this review, we briefly examine fragile X syndrome, amyotrophic lateral sclerosis, Alzheimer's disease, and spinal muscular atrophy, with a focus on disease pathogenesis with regard to local mRNA translation and axon transport, suggesting possible treatment directions.
Collapse
Affiliation(s)
- Jin-Xin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yi-Jie Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Fen Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
31
|
Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2020; 114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
The control of mRNA translation has key roles in the regulation of gene expression and biological processes such as mammalian cellular differentiation and identity. Methodological advances in the last decade have resulted in considerable progress towards understanding how translational control contributes to the regulation of diverse biological phenomena. In this review, we discuss recent findings in the involvement of translational control in the mammalian neocortex development and neuronal biology. We focus on regulatory mechanisms that modulate translational efficiency during neural stem cells self-renewal and differentiation, as well as in neuronal-related processes such as synapse, plasticity, and memory.
Collapse
Affiliation(s)
- Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; PhD Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
32
|
Leng Y, Sim S, Magidson V, Wolin SL. Noncoding Y RNAs regulate the levels, subcellular distribution and protein interactions of their Ro60 autoantigen partner. Nucleic Acids Res 2020; 48:6919-6930. [PMID: 32469055 DOI: 10.1093/nar/gkaa414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
Noncoding Y RNAs are abundant in animal cells and present in many bacteria. These RNAs are bound and stabilized by Ro60, a ring-shaped protein that is a target of autoantibodies in patients with systemic lupus erythematosus. Studies in bacteria revealed that Y RNA tethers Ro60 to a ring-shaped exoribonuclease, forming a double-ringed RNP machine specialized for structured RNA degradation. In addition to functioning as a tether, the bacterial RNA gates access of substrates to the Ro60 cavity. To identify roles for Y RNAs in mammals, we used CRISPR to generate mouse embryonic stem cells lacking one or both of the two murine Y RNAs. Despite reports that animal cell Y RNAs are essential for DNA replication, cells lacking these RNAs divide normally. However, Ro60 levels are reduced, revealing that Y RNA binding is required for Ro60 to accumulate to wild-type levels. Y RNAs regulate the subcellular location of Ro60, since Ro60 is reduced in the cytoplasm and increased in nucleoli when Y RNAs are absent. Last, we show that Y RNAs tether Ro60 to diverse effector proteins to generate specialized RNPs. Together, our data demonstrate that the roles of Y RNAs are intimately connected to that of their Ro60 partner.
Collapse
Affiliation(s)
- Yuanyuan Leng
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
33
|
Turner-Bridger B, Caterino C, Cioni JM. Molecular mechanisms behind mRNA localization in axons. Open Biol 2020; 10:200177. [PMID: 32961072 PMCID: PMC7536069 DOI: 10.1098/rsob.200177] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA) localization allows spatiotemporal regulation of the proteome at the subcellular level. This is observed in the axons of neurons, where mRNA localization is involved in regulating neuronal development and function by orchestrating rapid adaptive responses to extracellular cues and the maintenance of axonal homeostasis through local translation. Here, we provide an overview of the key findings that have broadened our knowledge regarding how specific mRNAs are trafficked and localize to axons. In particular, we review transcriptomic studies investigating mRNA content in axons and the molecular principles underpinning how these mRNAs arrived there, including cis-acting mRNA sequences and trans-acting proteins playing a role. Further, we discuss evidence that links defective axonal mRNA localization and pathological outcomes.
Collapse
Affiliation(s)
- Benita Turner-Bridger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Cinzia Caterino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jean-Michel Cioni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
34
|
Täuber H, Hüttelmaier S, Köhn M. POLIII-derived non-coding RNAs acting as scaffolds and decoys. J Mol Cell Biol 2020; 11:880-885. [PMID: 31152666 PMCID: PMC6884708 DOI: 10.1093/jmcb/mjz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 04/14/2019] [Indexed: 12/17/2022] Open
Abstract
A large variety of eukaryotic small structured POLIII-derived non-coding RNAs (ncRNAs) have been described in the past. However, for only few, e.g. 7SL and H1/MRP families, cellular functions are well understood. For the vast majority of these transcripts, cellular functions remain unknown. Recent findings on the role of Y RNAs and other POLIII-derived ncRNAs suggest an evolutionarily conserved function of these ncRNAs in the assembly and function of ribonucleoprotein complexes (RNPs). These RNPs provide cellular `machineries’, which are essential for guiding the fate and function of a variety of RNAs. In this review, we summarize current knowledge on the role of POLIII-derived ncRNAs in the assembly and function of RNPs. We propose that these ncRNAs serve as scaffolding factors that `chaperone’ RNA-binding proteins (RBPs) to form functional RNPs. In addition or associated with this role, some small ncRNAs act as molecular decoys impairing the RBP-guided control of RNA fate by competing with other RNA substrates. This suggests that POLIII-derived ncRNAs serve essential and conserved roles in the assembly of larger RNPs and thus the control of gene expression by indirectly guiding the fate of mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Hendrik Täuber
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Marcel Köhn
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany.,Julius Bernstein Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
35
|
Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers (Basel) 2020; 12:cancers12051238. [PMID: 32423154 PMCID: PMC7281143 DOI: 10.3390/cancers12051238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Y RNA are a class of small non-coding RNA that are largely conserved. Although their discovery was almost 40 years ago, their function is still under investigation. This is evident in cancer biology, where their role was first studied just a dozen years ago. Since then, only a few contributions were published, mostly scattered across different tumor types and, in some cases, also suffering from methodological limitations. Nonetheless, these sparse data may be used to make some estimations and suggest routes to better understand the role of Y RNA in cancer formation and characterization. Here we summarize the current knowledge about Y RNA in multiple types of cancer, also including a paragraph about tumors that might be included in this list in the future, if more evidence becomes available. The picture arising indicates that Y RNA might be useful in tumor characterization, also relying on non-invasive methods, such as the analysis of the content of extracellular vesicles (EV) that are retrieved from blood plasma and other bodily fluids. Due to the established role of Y RNA in DNA replication, it is possible to hypothesize their therapeutic targeting to inhibit cell proliferation in oncological patients.
Collapse
|
36
|
Loffreda A, Nizzardo M, Arosio A, Ruepp MD, Calogero RA, Volinia S, Galasso M, Bendotti C, Ferrarese C, Lunetta C, Rizzuti M, Ronchi AE, Mühlemann O, Tremolizzo L, Corti S, Barabino SML. miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog Neurobiol 2020; 190:101803. [PMID: 32335272 DOI: 10.1016/j.pneurobio.2020.101803] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentless and fatal neurological disease characterized by the selective degeneration of motor neurons. No effective therapy is available for this disease. Several lines of evidence indicate that alteration of RNA metabolism, including microRNA (miRNA) processing, is a relevant pathogenetic factor and a possible therapeutic target for ALS. Here, we showed that the abundance of components in the miRNA processing machinery is altered in a SOD1-linked cellular model, suggesting consequent dysregulation of miRNA biogenesis. Indeed, high-throughput sequencing of the small RNA fraction showed that among the altered miRNAs, miR-129-5p was increased in different models of SOD1-linked ALS and in peripheral blood cells of sporadic ALS patients. We demonstrated that miR-129-5p upregulation causes the downregulation of one of its targets: the RNA-binding protein ELAVL4/HuD. ELAVL4/HuD is predominantly expressed in neurons, where it controls several key neuronal mRNAs. Overexpression of pre-miR-129-1 inhibited neurite outgrowth and differentiation via HuD silencing in vitro, while its inhibition with an antagomir rescued the phenotype. Remarkably, we showed that administration of an antisense oligonucleotide (ASO) inhibitor of miR-129-5p to an ALS animal model, SOD1 (G93A) mice, result in a significant increase in survival and improved the neuromuscular phenotype in treated mice. These results identify miR-129-5p as a therapeutic target that is amenable to ASO modulation for the treatment of ALS patients.
Collapse
Affiliation(s)
- Alessia Loffreda
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Alessandro Arosio
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, 44121 Ferrara, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, Università degli Studi, 44121 Ferrara, Italy
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Carlo Ferrarese
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy; Neurology Unit, San Gerardo Hospital, Monza, MB, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, 20162 Milan, Italy
| | - Mafalda Rizzuti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Antonella E Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Lucio Tremolizzo
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, 20052 Monza, MB, Italy; Neurology Unit, San Gerardo Hospital, Monza, MB, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Silvia M L Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
37
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
39
|
Francisco-Velilla R, Azman EB, Martinez-Salas E. Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5. Bioessays 2019; 41:e1800241. [PMID: 30919488 DOI: 10.1002/bies.201800241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Embarc-Buh Azman
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
40
|
Panayotis N, Fainzilber M. Hidden Figures: A Non-translated RNA Regulates Axonal Neurotrophin Signaling. Neuron 2019; 102:507-509. [PMID: 31071280 DOI: 10.1016/j.neuron.2019.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this issue of Neuron, Crerar et al. (2019) found Tp53inp2 as a highly expressed RNA in sympathetic neuron axons. Strikingly, its long 3' UTR ensures that Tp53inp2 is not translated in axons, and the untranslated RNA affects neuronal growth by interacting with neurotrophin receptors.
Collapse
Affiliation(s)
- Nicolas Panayotis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
41
|
De Santis R, Alfano V, de Turris V, Colantoni A, Santini L, Garone MG, Antonacci G, Peruzzi G, Sudria-Lopez E, Wyler E, Anink JJ, Aronica E, Landthaler M, Pasterkamp RJ, Bozzoni I, Rosa A. Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Rep 2019; 27:3818-3831.e5. [PMID: 31242416 PMCID: PMC6613039 DOI: 10.1016/j.celrep.2019.05.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has been genetically linked to mutations in RNA-binding proteins (RBPs), including FUS. Here, we report the RNA interactome of wild-type and mutant FUS in human motor neurons (MNs). This analysis identified a number of RNA targets. Whereas the wild-type protein preferentially binds introns, the ALS mutation causes a shift toward 3' UTRs. Neural ELAV-like RBPs are among mutant FUS targets. As a result, ELAVL4 protein levels are increased in mutant MNs. ELAVL4 and mutant FUS interact and co-localize in cytoplasmic speckles with altered biomechanical properties. Upon oxidative stress, ELAVL4 and mutant FUS are engaged in stress granules. In the spinal cord of FUS ALS patients, ELAVL4 represents a neural-specific component of FUS-positive cytoplasmic aggregates, whereas in sporadic patients it co-localizes with phosphorylated TDP-43-positive inclusions. We propose that pathological mutations in FUS trigger an aberrant crosstalk with ELAVL4 with implications for ALS.
Collapse
Affiliation(s)
- Riccardo De Santis
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Vincenzo Alfano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Santini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Maria Giovanna Garone
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giuseppe Antonacci
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Irene Bozzoni
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
42
|
Boccitto M, Wolin SL. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit Rev Biochem Mol Biol 2019; 54:133-152. [PMID: 31084369 DOI: 10.1080/10409238.2019.1608902] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3' to 5' exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren's syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Marco Boccitto
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| | - Sandra L Wolin
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| |
Collapse
|
43
|
Mirisis AA, Carew TJ. The ELAV family of RNA-binding proteins in synaptic plasticity and long-term memory. Neurobiol Learn Mem 2019; 161:143-148. [PMID: 30998973 DOI: 10.1016/j.nlm.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 12/26/2022]
Abstract
The mechanisms of de novo gene expression and translation of specific gene transcripts have long been known to support long-lasting changes in synaptic plasticity and behavioral long-term memory. In recent years, it has become increasingly apparent that gene expression is heavily regulated not only on the level of transcription, but also through post-transcriptional gene regulation, which governs the subcellular localization, stability, and likelihood of translation of mRNAs. Specific families of RNA-binding proteins (RBPs) bind transcripts which contain AU-rich elements (AREs) within their 3' UTR and thereby govern their downstream fate. These post-transcriptional gene regulatory mechanisms are coordinated through the same cell signaling pathways that play critical roles in long-term memory formation. In this review, we discuss recent results that demonstrate the roles that these ARE-binding proteins play in LTM formation.
Collapse
Affiliation(s)
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
44
|
Abstract
In this issue of Molecular Cell, Tebaldi et al. (2018) identify the neuron-specific RNA-binding protein HuD as a regulator of global protein synthesis and translation enhancer of specific mTORC1-responsive transcripts. Importantly, the authors identify that the Y3 small non-coding RNA binds HuD to modulate translation and neurogenesis.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
45
|
Driedonks TAP, Nolte-'t Hoen ENM. Circulating Y-RNAs in Extracellular Vesicles and Ribonucleoprotein Complexes; Implications for the Immune System. Front Immunol 2019; 9:3164. [PMID: 30697216 PMCID: PMC6340977 DOI: 10.3389/fimmu.2018.03164] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The exchange of extracellular vesicles (EV) between immune cells plays a role in various immune regulatory processes. EV are nano-sized lipid bilayer-enclosed structures that contain a multitude of proteins and small non-coding RNA molecules. Of the various RNA classes present in EV, miRNAs have been most intensively studied because of their known gene-regulatory functions. These miRNAs constitute only a minor part of all EV-enclosed RNA, whereas other 20–200 nt sized non-coding RNAs were shown to be abundantly present in EV. Several of these mid-sized RNAs perform basic functions in cells, but their function in EV remains elusive. One prominent class of mid-sized extracellular RNAs associated with EV are the Y-RNAs. This family of highly conserved non-coding RNAs was initially discovered as RNA component of circulating ribonucleoprotein autoantigens in serum from Systemic Lupus Erythematosus and Sjögren's Syndrome patients. Y-RNA has been implicated in cellular processes such as DNA replication and RNA quality control. In recent years, Y-RNA has been abundantly detected in EV from multiple different cell lines and biofluids, and also in murine and human retroviruses. Accumulating evidence suggests that EV-associated Y-RNA may be involved in a range of immune-related processes, including inflammation, immune suppression, and establishment of the tumor microenvironment. Moreover, changes in plasma levels of extracellular Y-RNA have been associated with various diseases. Recent studies have aimed to address the mechanisms underlying their release and function. We for example showed that the levels of EV-associated Y-RNA released by immune cells can be regulated by Toll-like receptor (TLR) signaling. Combined, these data have triggered increased interest in extracellular Y-RNAs. In this review, we provide an overview of studies reporting the occurrence of extracellular Y-RNAs, as well as signaling properties and immune-related functions attributed to these RNAs. We list RNA-binding proteins currently known to interact with Y-RNAs and evaluate their occurrence in EV. In parallel, we discuss technical challenges in assessing whether extracellular Y-RNAs are contained in ribonucleoprotein complexes or EV. By integrating the current knowledge on extracellular Y-RNA we further reflect on the biomarker potential of Y-RNA and their role in immune cell communication and immunopathology.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|