1
|
Sunami T, Luo D, Sato S, Kato J, Yamanaka M, Akamatsu K, Kurumizaka H, Kono H. FRET analysis of the unwrapping of nucleosomal DNA containing a sequence characteristic of the + 1 nucleosome. Sci Rep 2025; 15:2169. [PMID: 39821115 PMCID: PMC11739627 DOI: 10.1038/s41598-025-86075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Sequence-dependent mechanical properties of DNA could play essential roles in nuclear processes by affecting histone-DNA interactions. Previously, we found that the DNA entry site of the first nucleosomes from the transcription start site (+ 1 nucleosome) in budding yeast enriches AA/TT steps, but not the exit site, and the biased presence of AA/TT in the entry site was associated with the transcription levels of yeast genes. Because AA/TT is a rigid dinucleotide step, we considered that AA/TT causes DNA unwrapping. However, our previous MNase-seq experiments with reconstituted nucleosomes left some doubt regarding this interpretation, owing to its high exonuclease activity. Furthermore, MNase cleavage did not provide direct evidence of its structural state. In this study, Förster resonance energy transfer (FRET) measurements were used to investigate salt-induced conformational changes in nucleosomal DNA containing AA/TT repeats at the entry site. We observed that the AA/TT region wrapped around the histone core was as likely as other DNA sequences at physiological salt concentrations. However, it unwrapped at a lower salt concentration, indicating weaker electrostatic interactions with the histone core. Ethidium-induced nucleosome disruption assay showed that the intercalator had greater access to DNA with AA/TT at the entry site. Taken together, these results suggest that AA/TT at the entry sites induces DNA unwrapping from the histone core on the promoter side, which may promote transcriptional activation in response to the approach of transcription-related proteins.
Collapse
Affiliation(s)
- Tomoko Sunami
- Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.
| | - Di Luo
- Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Shoko Sato
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Junko Kato
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Miki Yamanaka
- Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan
| | - Ken Akamatsu
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology, 8-1-7, Umemidai, Kizugawa City, Kyoto, 619-0215, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-Ku, Chiba city, Chiba, 263-8522, Japan.
| |
Collapse
|
2
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
3
|
Amigo R, Raiqueo F, Tarifeño E, Farkas C, Gutiérrez JL. Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 2023; 24:15245. [PMID: 37894925 PMCID: PMC10607297 DOI: 10.3390/ijms242015245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.
Collapse
Affiliation(s)
- Roberto Amigo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Fernanda Raiqueo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Estefanía Tarifeño
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Carlos Farkas
- Biomedical Sciences Research Laboratory, Department of Basic Sciences and Morphology, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - José L. Gutiérrez
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| |
Collapse
|
4
|
Zhang M, Jungblut A, Kunert F, Hauptmann L, Hoffmann T, Kolesnikova O, Metzner F, Moldt M, Weis F, DiMaio F, Hopfner KP, Eustermann S. Hexasome-INO80 complex reveals structural basis of noncanonical nucleosome remodeling. Science 2023; 381:313-319. [PMID: 37384673 DOI: 10.1126/science.adf6287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In this work, we report the structural mechanism for adenosine 5'-triphosphate-dependent chromatin remodeling of hexasomes by the INO80 complex. We show how INO80 recognizes noncanonical DNA and histone features of hexasomes that emerge from the loss of H2A-H2B. A large structural rearrangement switches the catalytic core of INO80 into a distinct, spin-rotated mode of remodeling while its nuclear actin module remains tethered to long stretches of unwrapped linker DNA. Direct sensing of an exposed H3-H4 histone interface activates INO80, independently of the H2A-H2B acidic patch. Our findings reveal how the loss of H2A-H2B grants remodelers access to a different, yet unexplored layer of energy-driven chromatin regulation.
Collapse
Affiliation(s)
- Min Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Anna Jungblut
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Franziska Kunert
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Olga Kolesnikova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Felix Metzner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Manuela Moldt
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
5
|
André KM, Giordanengo Aiach N, Martinez-Fernandez V, Zeitler L, Alberti A, Goldar A, Werner M, Denby Wilkes C, Soutourina J. Functional interplay between Mediator and RSC chromatin remodeling complex controls nucleosome-depleted region maintenance at promoters. Cell Rep 2023; 42:112465. [PMID: 37133993 DOI: 10.1016/j.celrep.2023.112465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
Chromatin organization is crucial for transcriptional regulation in eukaryotes. Mediator is an essential and conserved co-activator thought to act in concert with chromatin regulators. However, it remains largely unknown how their functions are coordinated. Here, we provide evidence in the yeast Saccharomyces cerevisiae that Mediator establishes physical contact with RSC (Remodels the Structure of Chromatin), a conserved and essential chromatin remodeling complex that is crucial for nucleosome-depleted region (NDR) formation. We determine the role of Mediator-RSC interaction in their chromatin binding, nucleosome occupancy, and transcription on a genomic scale. Mediator and RSC co-localize on wide NDRs of promoter regions, and specific Mediator mutations affect nucleosome eviction and TSS-associated +1 nucleosome stability. This work shows that Mediator contributes to RSC remodeling function to shape NDRs and maintain chromatin organization on promoter regions. It will help in our understanding of transcriptional regulation in the chromatin context relevant for severe diseases.
Collapse
Affiliation(s)
- Kévin M André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Nathalie Giordanengo Aiach
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Veronica Martinez-Fernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leo Zeitler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Michel Werner
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Lorch Y, Kornberg RD, Maier-Davis B. Role of the histone tails in histone octamer transfer. Nucleic Acids Res 2023; 51:3671-3678. [PMID: 36772826 PMCID: PMC10164550 DOI: 10.1093/nar/gkad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
The exceptionally high positive charge of the histones, concentrated in the N- and C-terminal tails, is believed to contribute to the stability of the nucleosome by neutralizing the negative charge of the nucleosomal DNA. We find, on the contrary, that the high positive charge contributes to instability, performing an essential function in chromatin remodeling. We show that the tails are required for removal of the histone octamer by the RSC chromatin remodeling complex, and this function is not due to direct RSC-tail interaction. We also show that the tails are required for histone octamer transfer from nucleosomes to DNA, and this activity of the tails is a consequence of their positive charge. Thus, the histone tails, intrinsically disordered protein regions, perform a critical role in chromatin structure and transcription, unrelated to their well-known role in regulation through posttranscriptional modification.
Collapse
Affiliation(s)
- Yahli Lorch
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara Maier-Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Disruption of nucleosomes by DNA groove binders of clinical significance and implications for chromatin remodeling. Proc Natl Acad Sci U S A 2023; 120:e2216611120. [PMID: 36574674 PMCID: PMC9910476 DOI: 10.1073/pnas.2216611120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small molecules that bind in the minor groove of DNA are in clinical use as antibiotics and antitumor drugs. Two members of this class of molecules, netropsin and chromomycin, are shown here to displace DNA from the nucleosome and promote transfer of the histone octamer to an acceptor protein. The effects of these groove-binding molecules are exploited to address an outstanding problem in the mechanism of the RSC chromatin remodeling complex. RSC and other remodeling complexes are DNA translocases, acting near the center of the nucleosomal DNA, but translocation is apparently impossible because DNA cannot slide across the histone surface in the nucleosome. Netropsin and chromomycin promote the release of DNA from the histone surface, enhance the formation of a RSC-nucleosome complex, and synergize with RSC in chromatin remodeling. These findings are in keeping with an involvement of bulge translocation in chromatin remodeling.
Collapse
|
8
|
Cao X, Zhang M, Li H, Chen K, Wang Y, Yang J. Histone Deacetylase9 Represents the Epigenetic Promotion of M1 Macrophage Polarization and Inflammatory Response via TLR4 Regulation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7408136. [PMID: 35941971 PMCID: PMC9356872 DOI: 10.1155/2022/7408136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022]
Abstract
Atherosclerosis is a chronic inflammatory response mediated by various factors, where epigenetic regulation involving histone deacetylation is envisaged to modulate the expression of related proteins by regulating the binding of transcription factors to DNA, thereby influencing the development of atherosclerosis. The mechanism of atherosclerosis by histone deacetylation is partly known; hence, this project aimed at investigating the role of histone deacetylase 9 (HDAC9) in atherosclerosis. For this purpose, serum was separated from blood samples following clotting and centrifugation from atherosclerotic and healthy patients (n = 40 each), and then, various tests were performed. The results indicated that toll-like receptor 4 (TLR4) was not only positively correlated to the HDAC9 gene, but was also upregulated in atherosclerosis, where it was also significantly upregulated in the atherosclerosis cell model of oxidized low-density lipoprotein-induced macrophages. Conversely, the TLR4 was significantly downregulated in instances of loss of HDAC9 function, cementing the bridging relationship between HDAC9 and macrophage polarization, where the HDAC9 was found to upregulate M1 macrophage polarization which translated into the release of higher content of proinflammatory cytokines such as interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), which tend to significantly decrease following the deletion of TLR4. Hence, this study reports novel relation between epigenetic control and atherosclerosis, which could partly be explained by histone deacetylation.
Collapse
Affiliation(s)
- Xi Cao
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Man Zhang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Li
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Kaiming Chen
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Central Laboratory of Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Jia Yang
- Department of Circulatory, Affiliated Center of Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Sehrawat P, Shobhawat R, Kumar A. Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Front Genet 2022; 13:903923. [PMID: 35910215 PMCID: PMC9329655 DOI: 10.3389/fgene.2022.903923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The fundamental packaging unit of chromatin, i.e., nucleosome, consists of ∼147 bp of DNA wrapped around a histone octamer composed of the core histones, H2A, H2B, H3, and H4, in two copies each. DNA packaged in nucleosomes must be accessible to various machineries, including replication, transcription, and DNA damage repair, implicating the dynamic nature of chromatin even in its compact state. As the tails protrude out of the nucleosome, they are easily accessible to various chromatin-modifying machineries and undergo post-translational modifications (PTMs), thus playing a critical role in epigenetic regulation. PTMs can regulate chromatin states via charge modulation on histones, affecting interaction with various chromatin-associated proteins (CAPs) and DNA. With technological advancement, the list of PTMs is ever-growing along with their writers, readers, and erasers, expanding the complexity of an already intricate epigenetic field. In this review, we discuss how some of the specific PTMs on flexible histone tails affect the nucleosomal structure and regulate the accessibility of chromatin from a mechanistic standpoint and provide structural insights into some newly identified PTM–reader interaction.
Collapse
|
10
|
Cucinotta CE, Dell RH, Braceros KCA, Tsukiyama T. RSC primes the quiescent genome for hypertranscription upon cell-cycle re-entry. eLife 2021; 10:e67033. [PMID: 34042048 PMCID: PMC8186906 DOI: 10.7554/elife.67033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Quiescence is a reversible G0 state essential for differentiation, regeneration, stem-cell renewal, and immune cell activation. Necessary for long-term survival, quiescent chromatin is compact, hypoacetylated, and transcriptionally inactive. How transcription activates upon cell-cycle re-entry is undefined. Here we report robust, widespread transcription within the first minutes of quiescence exit. During quiescence, the chromatin-remodeling enzyme RSC was already bound to the genes induced upon quiescence exit. RSC depletion caused severe quiescence exit defects: a global decrease in RNA polymerase II (Pol II) loading, Pol II accumulation at transcription start sites, initiation from ectopic upstream loci, and aberrant antisense transcription. These phenomena were due to a combination of highly robust Pol II transcription and severe chromatin defects in the promoter regions and gene bodies. Together, these results uncovered multiple mechanisms by which RSC facilitates initiation and maintenance of large-scale, rapid gene expression despite a globally repressive chromatin state.
Collapse
Affiliation(s)
| | - Rachel H Dell
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Keean CA Braceros
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
11
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast. BIOLOGY 2020; 9:biology9080190. [PMID: 32722483 PMCID: PMC7466152 DOI: 10.3390/biology9080190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cellular DNA is packaged into chromatin, which is composed of regularly-spaced nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1, ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes. ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes. We propose that the competing remodelers regulate spacing, which in turn controls the binding of linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest that it is a RSC-bound “fragile nucleosome”, whereas we propose that it is a non-histone transcription complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in the formation of phased nucleosomal arrays on both sides.
Collapse
|
13
|
Chen T, Tyagi S. Integrative computational epigenomics to build data-driven gene regulation hypotheses. Gigascience 2020; 9:giaa064. [PMID: 32543653 PMCID: PMC7297091 DOI: 10.1093/gigascience/giaa064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diseases are complex phenotypes often arising as an emergent property of a non-linear network of genetic and epigenetic interactions. To translate this resulting state into a causal relationship with a subset of regulatory features, many experiments deploy an array of laboratory assays from multiple modalities. Often, each of these resulting datasets is large, heterogeneous, and noisy. Thus, it is non-trivial to unify these complex datasets into an interpretable phenotype. Although recent methods address this problem with varying degrees of success, they are constrained by their scopes or limitations. Therefore, an important gap in the field is the lack of a universal data harmonizer with the capability to arbitrarily integrate multi-modal datasets. RESULTS In this review, we perform a critical analysis of methods with the explicit aim of harmonizing data, as opposed to case-specific integration. This revealed that matrix factorization, latent variable analysis, and deep learning are potent strategies. Finally, we describe the properties of an ideal universal data harmonization framework. CONCLUSIONS A sufficiently advanced universal harmonizer has major medical implications, such as (i) identifying dysregulated biological pathways responsible for a disease is a powerful diagnostic tool; (2) investigating these pathways further allows the biological community to better understand a disease's mechanisms; and (3) precision medicine also benefits from developments in this area, particularly in the context of the growing field of selective epigenome editing, which can suppress or induce a desired phenotype.
Collapse
Affiliation(s)
- Tyrone Chen
- 25 Rainforest Walk, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sonika Tyagi
- 25 Rainforest Walk, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
14
|
Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 2020; 579:448-451. [PMID: 32188943 PMCID: PMC7093204 DOI: 10.1038/s41586-020-2088-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Chromatin remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. The essential Saccharomyces cerevisiae SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and –1 nucleosomes that flank NDRs8,9. Here, we present the cryo-EM structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and ARP modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with their ‘SnAC’ and ‘finger’ elements, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity5. The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.
Collapse
|
15
|
Chen G, Li W, Yan F, Wang D, Chen Y. The Structural Basis for Specific Recognition of H3K14 Acetylation by Sth1 in the RSC Chromatin Remodeling Complex. Structure 2019; 28:111-118.e3. [PMID: 31711754 DOI: 10.1016/j.str.2019.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
The Saccharomyces cerevisiae RSC (Remodel the Structure of Chromatin) complex is a chromatin-remodeling complex and plays essential roles in transcription regulation and DNA repair. The acetylation of H3 Lysine14 (H3K14Ac) enhances the RSC retention on nucleosomes and increases the remodeling activity of RSC. However, which RSC component recognizes H3K14Ac remains unclear. Here, we discovered that the bromodomain of the catalytic subunit Sth1 (Sth1BD) possessed the strongest affinity to H3K14Ac among all RSC bromodomains. The Sth1BD specifically recognized the K(Ac)ΦΦR motif (Φ stands for any hydrophobic amino acid), including H3K14Ac and H4K20Ac. We determined the crystal structures of Sth1BD at 2.40 Å resolution and Sth1BD-H3K14Ac complex at 1.40 Å resolution. The extensive interfaces between Sth1BD and H36-21 facilitate the specific and robust binding of Sth1BD to H3K14Ac. Our studies provide insights into how the RSC complex recognizes H3K14Ac to orchestrate the crosstalk between histone acetylation and chromatin remodeling.
Collapse
Affiliation(s)
- Guochao Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Wei Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Fuxiang Yan
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Duo Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, P. R. China.
| |
Collapse
|
16
|
Blus BJ, Hashimoto H, Seo HS, Krolak A, Debler EW. Substrate Affinity and Specificity of the ScSth1p Bromodomain Are Fine-Tuned for Versatile Histone Recognition. Structure 2019; 27:1460-1468.e3. [PMID: 31327661 DOI: 10.1016/j.str.2019.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022]
Abstract
Bromodomains recognize a wide range of acetylated lysines in histones and other nuclear proteins. Substrate specificity is critical for their biological function and arises from unique acetyl-lysine binding sites formed by variable loop regions. Here, we analyzed substrate affinity and specificity of the yeast ScSth1p bromodomain, an essential component of the "Remodels the Structure of Chromatin" complex, and found that the wild-type bromodomain preferentially recognizes H3K14ac and H4K20ac peptides. Mutagenesis studies-guided by our crystal structure determined at 2.7-Å resolution-revealed loop residues Ser1276 and Trp1338 as key determinants for such interactions. Strikingly, point mutations of each of these residues substantially increased peptide binding affinity and selectivity, respectively. Our data demonstrate that the ScSth1p bromodomain is not optimized for binding to an individual acetylation mark, but fine-tuned for interactions with several such modifications, consistent with the versatile and multivalent nature of histone recognition by reader modules such as bromodomains.
Collapse
Affiliation(s)
- Bartlomiej J Blus
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Hideharu Hashimoto
- Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Aleksandra Krolak
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Erik W Debler
- Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|