1
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
2
|
Hartig AM, Dai W, Zhang K, Kapoor K, Rottinghaus AG, Moon TS, Parker KM. Influence of Environmental Conditions on the Escape Rates of Biocontained Genetically Engineered Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22657-22667. [PMID: 39668804 PMCID: PMC11750180 DOI: 10.1021/acs.est.4c10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The development of genetically engineered microbes (GEMs) has resulted in an urgent need to control their persistence in the environment. The use of biocontainment such as kill switches is a critical approach to prevent the unintended proliferation of GEMs; however, the effectiveness of kill switches─reported as escape rates, i.e., the ratio of the number of viable microbes when the kill switch is triggered relative to the number when it is not triggered─is typically assessed under laboratory conditions that do not resemble environmental conditions under which biocontainment must perform. In this study, we discovered that the escape rate of an Escherichia coli GEM biocontained with a CRISPR-based kill switch triggered by anhydrotetracycline (aTc) increased by 3-4 orders of magnitude when deployed in natural surface waters as compared to rich laboratory media. We identified that environmental conditions (e.g., pH, nutrient levels) may contribute to elevated escape rates in multiple ways, including by altering the chemical speciation of the kill switch trigger to reduce its uptake and providing limited nutrients required for the kill switch to function. Our study demonstrated that conditions in the intended environment must be considered in order to design effective GEM biocontainment strategies.
Collapse
Affiliation(s)
- Anna M. Hartig
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Wentao Dai
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Ke Zhang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Krisha Kapoor
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Austin G. Rottinghaus
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, United States
| | - Kimberly M. Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| |
Collapse
|
3
|
Payne S, Wick S, Carr PA, Guido NJ. A Methodology for the Assessment and Prioritization of Genetic Biocontainment Technologies for Engineered Microbes. APPLIED BIOSAFETY 2024; 29:108-119. [PMID: 39144101 PMCID: PMC11319856 DOI: 10.1089/apb.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Introduction Organisms engineered with synthetic genes and genomes have the potential to play critical roles to address important issues in the environment, human health, and manufacturing. Engineered genetic biocontainment technologies are needed to manage the risks of unintended consequences when deploying these biological systems in consultation with the biosafety and biosecurity communities. Metrics measuring genetic biocontainment and a methodology to apply them are required to determine which genetic biocontainment technologies warrant further development for real-world applications. In this study, we develop and apply a systems analysis of the current technical landscape using expert opinion and a metric-based scoring system resulting in a semiquantitative comparative assessment of genetic biocontainment technologies in microorganisms. Methods Genetic biocontainment technologies were evaluated according to multiple metrics, falling into two broad classes: feasibility and applicability. Specific genetic biocontainment example scenarios and generalized categories were scored with these metrics. Gap analysis was carried out, indicating particular areas where genetic biocontainment can be improved. Results Metric analysis scoring of feasibility and applicability enabled prioritization of genetic biocontainment technologies for real-world applications. Gap analysis showed that technology readiness and containment stability scored low for a number of scenarios and categories, indicating a general need for further development before they can be ready for deployment. Conclusion Developing an assessment framework with defined metrics produced a straightforward system for evaluating genetic biocontainment strategies intended for various real-world applications. Use of the methodology also provided insights into existing gaps in genetic biocontainment strategies, and by altering the metrics, can be applied to other biotechnologies.
Collapse
Affiliation(s)
- Stephen Payne
- MIT Lincoln Laboratory, Lexington, Massachusetts, USA
| | - Scott Wick
- MIT Lincoln Laboratory, Lexington, Massachusetts, USA
| | - Peter A. Carr
- MIT Lincoln Laboratory, Lexington, Massachusetts, USA
| | | |
Collapse
|
4
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
5
|
Van Den Berghe M, Walworth NG, Dalvie NC, Dupont CL, Springer M, Andrews MG, Romaniello SJ, Hutchins DA, Montserrat F, Silver PA, Nealson KH. Microbial Catalysis for CO 2 Sequestration: A Geobiological Approach. Cold Spring Harb Perspect Biol 2024; 16:a041673. [PMID: 37788887 PMCID: PMC11065169 DOI: 10.1101/cshperspect.a041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
One of the greatest threats facing the planet is the continued increase in excess greenhouse gasses, with CO2 being the primary driver due to its rapid increase in only a century. Excess CO2 is exacerbating known climate tipping points that will have cascading local and global effects including loss of biodiversity, global warming, and climate migration. However, global reduction of CO2 emissions is not enough. Carbon dioxide removal (CDR) will also be needed to avoid the catastrophic effects of global warming. Although the drawdown and storage of CO2 occur naturally via the coupling of the silicate and carbonate cycles, they operate over geological timescales (thousands of years). Here, we suggest that microbes can be used to accelerate this process, perhaps by orders of magnitude, while simultaneously producing potentially valuable by-products. This could provide both a sustainable pathway for global drawdown of CO2 and an environmentally benign biosynthesis of materials. We discuss several different approaches, all of which involve enhancing the rate of silicate weathering. We use the silicate mineral olivine as a case study because of its favorable weathering properties, global abundance, and growing interest in CDR applications. Extensive research is needed to determine both the upper limit of the rate of silicate dissolution and its potential to economically scale to draw down significant amounts (Mt/Gt) of CO2 Other industrial processes have successfully cultivated microbial consortia to provide valuable services at scale (e.g., wastewater treatment, anaerobic digestion, fermentation), and we argue that similar economies of scale could be achieved from this research.
Collapse
Affiliation(s)
| | - Nathan G Walworth
- Vesta, San Francisco, California 94114, USA
- University of Southern California, Los Angeles, California 90007, USA
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Neil C Dalvie
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chris L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, California 92037, USA
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | - David A Hutchins
- University of Southern California, Los Angeles, California 90007, USA
| | | | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kenneth H Nealson
- Vesta, San Francisco, California 94114, USA
- University of Southern California, Los Angeles, California 90007, USA
| |
Collapse
|
6
|
Gómez-Márquez J. The Lithbea Domain. Adv Biol (Weinh) 2024; 8:e2300679. [PMID: 38386280 DOI: 10.1002/adbi.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The tree of life is the evolutionary metaphor for the past and present connections of all cellular organisms. Today, to speak of biodiversity is not only to speak of archaea, bacteria, and eukaryotes, but they should also consider the "new biodiversity" that includes viruses and synthetic organisms, which represent the new forms of life created in laboratories. There is even a third group of artificial entities that, although not living systems, pretend to imitate the living. To embrace and organize all this new biodiversity, I propose the creation of a new domain, with the name Lithbea (from life-on-the-border entites) The criteria for inclusion as members of Lithbea are: i) the acellular nature of the living system, ii) its origin in laboratory manipulation, iii) showing new biological traits, iv) the presence of exogenous genetic elements, v) artificial or inorganic nature. Within Lithbea there are two subdomains: Virworld (from virus world) which includes all viruses, regarded as lifeless living systems, and classified according to the International Committee on Taxonomy of Viruses (ICTV), and ii) Humade (from human-made) which includes all synthetic organisms and artificial entities. The relationships of Lithbea members to the three classical woesian domains and their implications are briefly discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain
| |
Collapse
|
7
|
Nagasawa Y, Nakayama M, Kato Y, Ogawa Y, Aribam SD, Tsugami Y, Iwata T, Mikami O, Sugiyama A, Onishi M, Hayashi T, Eguchi M. A novel vaccine strategy using quick and easy conversion of bacterial pathogens to unnatural amino acid-auxotrophic suicide derivatives. Microbiol Spectr 2024; 12:e0355723. [PMID: 38385737 PMCID: PMC10986568 DOI: 10.1128/spectrum.03557-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
We propose a novel strategy for quick and easy preparation of suicide live vaccine candidates against bacterial pathogens. This method requires only the transformation of one or more plasmids carrying genes encoding for two types of biological devices, an unnatural amino acid (uAA) incorporation system and toxin-antitoxin systems in which translation of the antitoxins requires the uAA incorporation. Escherichia coli BL21-AI laboratory strains carrying the plasmids were viable in the presence of the uAA, whereas the free toxins killed these strains after the removal of the uAA. The survival time after uAA removal could be controlled by the choice of the uAA incorporation system and toxin-antitoxin systems. Multilayered toxin-antitoxin systems suppressed escape frequency to less than 1 escape per 109 generations in the best case. This conditional suicide system also worked in Salmonella enterica and E. coli clinical isolates. The S. enterica vaccine strains were attenuated with a >105 fold lethal dose. Serum IgG response and protection against the parental pathogenic strain were confirmed. In addition, the live E. coli vaccine strain was significantly more immunogenic and provided greater protection than a formalin-inactivated vaccine. The live E. coli vaccine was not detected after inoculation, presumably because the uAA is not present in the host animals or the natural environment. These results suggest that this strategy provides a novel way to rapidly produce safe and highly immunogenic live bacterial vaccine candidates. IMPORTANCE Live vaccines are the oldest vaccines with a history of more than 200 years. Due to their strong immunogenicity, live vaccines are still an important category of vaccines today. However, the development of live vaccines has been challenging due to the difficulties in achieving a balance between safety and immunogenicity. In recent decades, the frequent emergence of various new and old pathogens at risk of causing pandemics has highlighted the need for rapid vaccine development processes. We have pioneered the use of uAAs to control gene expression and to conditionally kill host bacteria as a biological containment system. This report proposes a quick and easy conversion of bacterial pathogens into live vaccine candidates using this containment system. The balance between safety and immunogenicity can be modulated by the selection of the genetic devices used. Moreover, the uAA-auxotrophy can prevent the vaccine from infecting other individuals or establishing the environment.
Collapse
Affiliation(s)
- Yuya Nagasawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan
| | - Momoko Nakayama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yusuke Kato
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan
| | - Swarmistha Devi Aribam
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yusaku Tsugami
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan
| | - Taketoshi Iwata
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Osamu Mikami
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan
| | - Aoi Sugiyama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan
| | - Megumi Onishi
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan
| | - Tomohito Hayashi
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Hayashi N, Lai Y, Fuerte-Stone J, Mimee M, Lu TK. Cas9-assisted biological containment of a genetically engineered human commensal bacterium and genetic elements. Nat Commun 2024; 15:2096. [PMID: 38453913 PMCID: PMC10920895 DOI: 10.1038/s41467-024-45893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Sophisticated gene circuits built by synthetic biology can enable bacteria to sense their environment and respond predictably. Engineered biosensing bacteria outfitted with such circuits can potentially probe the human gut microbiome to prevent, diagnose, or treat disease. To provide robust biocontainment for engineered bacteria, we devised a Cas9-assisted auxotrophic biocontainment system combining thymidine auxotrophy, an Engineered Riboregulator (ER) for controlled gene expression, and a CRISPR Device (CD). The CD prevents the engineered bacteria from acquiring thyA via horizontal gene transfer, which would disrupt the biocontainment system, and inhibits the spread of genetic elements by killing bacteria harboring the gene cassette. This system tunably controlled gene expression in the human gut commensal bacterium Bacteroides thetaiotaomicron, prevented escape from thymidine auxotrophy, and blocked transgene dissemination. These capabilities were validated in vitro and in vivo. This biocontainment system exemplifies a powerful strategy for bringing genetically engineered microorganisms safely into biomedicine.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp., 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yong Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, MIT, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Jay Fuerte-Stone
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Timothy K Lu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Research Laboratory of Electronics, MIT, Cambridge, MA, 02139, USA.
- Broad Institute, Cambridge, MA, 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Zalatan JG, Petrini L, Geiger R. Engineering bacteria for cancer immunotherapy. Curr Opin Biotechnol 2024; 85:103061. [PMID: 38219524 PMCID: PMC10922846 DOI: 10.1016/j.copbio.2023.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/30/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Bacterial therapeutics have emerged as promising delivery systems to target tumors. These engineered live therapeutics can be harnessed to modulate the tumor microenvironment or to deliver and selectively release therapeutic payloads to tumors. A major challenge is to deliver bacteria systemically without causing widespread inflammation, which is critical for the many tumors that are not accessible to direct intratumoral injection. We describe potential strategies to address this challenge, along with approaches for specific payload delivery and biocontainment to ensure safety. These strategies will pave the way for the development of cost-effective, widely applicable next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Jesse G Zalatan
- Department of Chemistry, University of Washington, Seattle, WA, United States.
| | - Lorenzo Petrini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
11
|
Affiliation(s)
- Daniel R Amor
- Laboratoire de Physique, Ecole normale supérieure, Université PSL, CNRS, Paris, France.
- IAME, Université de Paris Cité, Université Sorbonne Paris Nord, INSERM, Paris, France.
| |
Collapse
|
12
|
Fooladi S, Rabiee N, Iravani S. Genetically engineered bacteria: a new frontier in targeted drug delivery. J Mater Chem B 2023; 11:10072-10087. [PMID: 37873584 DOI: 10.1039/d3tb01805a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Genetically engineered bacteria (GEB) have shown significant promise to revolutionize modern medicine. These engineered bacteria with unique properties such as enhanced targeting, versatility, biofilm disruption, reduced drug resistance, self-amplification capabilities, and biodegradability represent a highly promising approach for targeted drug delivery and cancer theranostics. This innovative approach involves modifying bacterial strains to function as drug carriers, capable of delivering therapeutic agents directly to specific cells or tissues. Unlike synthetic drug delivery systems, GEB are inherently biodegradable and can be naturally eliminated from the body, reducing potential long-term side effects or complications associated with residual foreign constituents. However, several pivotal challenges such as safety and controllability need to be addressed. Researchers have explored novel tactics to improve their capabilities and overcome existing challenges, including synthetic biology tools (e.g., clustered regularly interspaced short palindromic repeats (CRISPR) and bioinformatics-driven design), microbiome engineering, combination therapies, immune system interaction, and biocontainment strategies. Because of the remarkable advantages and tangible progress in this field, GEB may emerge as vital tools in personalized medicine, providing precise and controlled drug delivery for various diseases (especially cancer). In this context, future directions include the integration of nanotechnology with GEB, the focus on microbiota-targeted therapies, the incorporation of programmable behaviors, the enhancement in immunotherapy treatments, and the discovery of non-medical applications. In this way, careful ethical considerations and regulatory frameworks are necessary for developing GEB-based systems for targeted drug delivery. By addressing safety concerns, ensuring informed consent, promoting equitable access, understanding long-term effects, mitigating dual-use risks, and fostering public engagement, these engineered bacteria can be employed as promising delivery vehicles in bio- and nanomedicine. In this review, recent advances related to the application of GEB in targeted drug delivery and cancer therapy are discussed, covering crucial challenging issues and future perspectives.
Collapse
Affiliation(s)
- Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| |
Collapse
|
13
|
Peña-Castro JM, Muñoz-Páez KM, Robledo-Narvaez PN, Vázquez-Núñez E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. Microorganisms 2023; 11:2197. [PMID: 37764041 PMCID: PMC10535843 DOI: 10.3390/microorganisms11092197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria and yeast are being intensively used to produce biofuels and high-added-value products by using plant biomass derivatives as substrates. The number of microorganisms available for industrial processes is increasing thanks to biotechnological improvements to enhance their productivity and yield through microbial metabolic engineering and laboratory evolution. This is allowing the traditional industrial processes for biofuel production, which included multiple steps, to be improved through the consolidation of single-step processes, reducing the time of the global process, and increasing the yield and operational conditions in terms of the desired products. Engineered microorganisms are now capable of using feedstocks that they were unable to process before their modification, opening broader possibilities for establishing new markets in places where biomass is available. This review discusses metabolic engineering approaches that have been used to improve the microbial processing of biomass to convert the plant feedstock into fuels. Metabolically engineered microorganisms (MEMs) such as bacteria, yeasts, and microalgae are described, highlighting their performance and the biotechnological tools that were used to modify them. Finally, some examples of patents related to the MEMs are mentioned in order to contextualize their current industrial use.
Collapse
Affiliation(s)
- Julián Mario Peña-Castro
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico;
| | - Karla M. Muñoz-Páez
- CONAHCYT—Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Queretaro 76230, Queretaro, Mexico;
| | | | - Edgar Vázquez-Núñez
- Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas para la Sostenibilidad (NanoBioTS), Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León 37150, Guanajuato, Mexico
| |
Collapse
|
14
|
Chlebek JL, Leonard SP, Kang-Yun C, Yung MC, Ricci DP, Jiao Y, Park DM. Prolonging genetic circuit stability through adaptive evolution of overlapping genes. Nucleic Acids Res 2023; 51:7094-7108. [PMID: 37260076 PMCID: PMC10359631 DOI: 10.1093/nar/gkad484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
The development of synthetic biological circuits that maintain functionality over application-relevant time scales remains a significant challenge. Here, we employed synthetic overlapping sequences in which one gene is encoded or 'entangled' entirely within an alternative reading frame of another gene. In this design, the toxin-encoding relE was entangled within ilvA, which encodes threonine deaminase, an enzyme essential for isoleucine biosynthesis. A functional entanglement construct was obtained upon modification of the ribosome-binding site of the internal relE gene. Using this optimized design, we found that the selection pressure to maintain functional IlvA stabilized the production of burdensome RelE for >130 generations, which compares favorably with the most stable kill-switch circuits developed to date. This stabilizing effect was achieved through a complete alteration of the allowable landscape of mutations such that mutations inactivating the entangled genes were disfavored. Instead, the majority of lineages accumulated mutations within the regulatory region of ilvA. By reducing baseline relE expression, these more 'benign' mutations lowered circuit burden, which suppressed the accumulation of relE-inactivating mutations, thereby prolonging kill-switch function. Overall, this work demonstrates the utility of sequence entanglement paired with an adaptive laboratory evolution campaign to increase the evolutionary stability of burdensome synthetic circuits.
Collapse
Affiliation(s)
- Jennifer L Chlebek
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sean P Leonard
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Christina Kang-Yun
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Mimi C Yung
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dante P Ricci
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yongqin Jiao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dan M Park
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
15
|
He Z, Shen J, Li Q, Yang Y, Zhang D, Pan X. Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162148. [PMID: 36758696 DOI: 10.1016/j.scitotenv.2023.162148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yingli Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
16
|
Xiao Z, Zhao Q, Li W, Gao L, Liu G. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front Microbiol 2023; 14:1146210. [PMID: 37125207 PMCID: PMC10134904 DOI: 10.3389/fmicb.2023.1146210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
In the control of plant diseases, biocontrol has the advantages of being efficient and safe for human health and the environment. The filamentous fungus Trichoderma harzianum and its closely related species can inhibit the growth of many phytopathogenic fungi, and have been developed as commercial biocontrol agents for decades. In this review, we summarize studies on T. harzianum species complex from the perspective of strain improvement. To elevate the biocontrol ability, the production of extracellular proteins and compounds with antimicrobial or plant immunity-eliciting activities need to be enhanced. In addition, resistance to various environmental stressors should be strengthened. Engineering the gene regulatory system has the potential to modulate a variety of biological processes related to biocontrol. With the rapidly developing technologies for fungal genetic engineering, T. harzianum strains with increased biocontrol activities are expected to be constructed to promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Beijing, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
17
|
Murakami H, Sano K, Motomura K, Kuroda A, Hirota R. Assessment of horizontal gene transfer-mediated destabilization of Synechococcus elongatus PCC 7942 biocontainment system. J Biosci Bioeng 2023; 135:190-195. [PMID: 36653270 DOI: 10.1016/j.jbiosc.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
Biological containment is a biosafety strategy that prevents the dispersal of genetically modified organisms in natural ecosystems. We previously established a biocontainment system that makes bacterial growth dependent on the availability of phosphite (Pt), an ecologically rare form of phosphorus (P), by introducing Pt metabolic pathway genes and disrupting endogenous phosphate and organic phosphate transporter genes. Although this system proved highly effective, horizontal gene transfer (HGT) mediated recovery of a P transporter gene is considered as a potential pathway to abolish the Pt-dependent growth, resulting in escape from the containment. Here, we assessed the risk of HGT driven escape using the Pt-dependent cyanobacterium Synechococcus elongatus PCC 7942. Transformation experiments revealed that the Pt-dependent strain could regain phosphate transporter genes from the S. elongatus PCC 7942 wild-type genome and from the genome of the closely related strain, S. elongatus UTEX 2973. Transformed S. elongatus PCC 7942 became viable in a phosphate-containing medium. Meanwhile, transformation of the Synechocystis sp. PCC 6803 genome or environmental DNA did not yield escape strains, suggesting that only genetic material derived from phylogenetically-close species confer high risk to generate escape. Eliminating a single gene necessary for natural competence from the Pt-dependent strain reduced the escape occurrence rate. These results demonstrate that natural competence could be a potential risk to destabilize Pt-dependence, and therefore inhibiting exogenous DNA uptake would be effective for enhancing the robustness of the gene disruption-dependent biocontainment.
Collapse
Affiliation(s)
- Hiroki Murakami
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kosuke Sano
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kei Motomura
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
18
|
Kato Y. A strategy for addicting transgene-free bacteria to synthetic modified metabolites. Front Microbiol 2023; 14:1086094. [PMID: 36846762 PMCID: PMC9950777 DOI: 10.3389/fmicb.2023.1086094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Biological containment is a safeguard technology to prevent uncontrolled proliferation of "useful but dangerous" microbes. Addiction to synthetic chemicals is ideal for biological containment, but this currently requires introduction of transgenes containing synthetic genetic elements for which environmental diffusion has to be prevented. Here, I designed a strategy for addicting transgene-free bacteria to synthetic modified metabolites, in which the target organism that can neither produce an essential metabolite nor use the extracellularly supplied metabolite, is rescued by a synthetic derivative that is taken up from a medium and converted into the metabolite in the cell. Because design of the synthetic modified metabolite is the key technology, our strategy differs distinctly from conventional biological containment, which mainly depends on genetic manipulation of the target microorganisms. Our strategy is particularly promising for containment of non-genetically modified organisms such as pathogens and live vaccines.
Collapse
|
19
|
Halvorsen TM, Ricci DP, Park DM, Jiao Y, Yung MC. Comparison of Kill Switch Toxins in Plant-Beneficial Pseudomonas fluorescens Reveals Drivers of Lethality, Stability, and Escape. ACS Synth Biol 2022; 11:3785-3796. [PMID: 36346907 DOI: 10.1021/acssynbio.2c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kill switches provide a biocontainment strategy in which unwanted growth of an engineered microorganism is prevented by expression of a toxin gene. A major challenge in kill switch engineering is balancing evolutionary stability with robust cell killing activity in application relevant host strains. Understanding host-specific containment dynamics and modes of failure helps to develop potent yet stable kill switches. To guide the design of robust kill switches in the agriculturally relevant strain Pseudomonas fluorescens SBW25, we present a comparison of lethality, stability, and genetic escape of eight different toxic effectors in the presence of their cognate inactivators (i.e., toxin-antitoxin modules, polymorphic exotoxin-immunity systems, restriction endonuclease-methyltransferase pair). We find that cell killing capacity and evolutionary stability are inversely correlated and dependent on the level of protection provided by the inactivator gene. Decreasing the proteolytic stability of the inactivator protein can increase cell killing capacity, but at the cost of long-term circuit stability. By comparing toxins within the same genetic context, we determine that modes of genetic escape increase with circuit complexity and are driven by toxin activity, the protective capacity of the inactivator, and the presence of mutation-prone sequences within the circuit. Collectively, the results of our study reveal that circuit complexity, toxin choice, inactivator stability, and DNA sequence design are powerful drivers of kill switch stability and valuable targets for optimization of biocontainment systems.
Collapse
Affiliation(s)
- Tiffany M Halvorsen
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dante P Ricci
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dan M Park
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Yongqin Jiao
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Mimi C Yung
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| |
Collapse
|
20
|
Hirota R, Katsuura ZI, Momokawa N, Murakami H, Watanabe S, Ishida T, Ikeda T, Funabashi H, Kuroda A. Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy. ACS Synth Biol 2022; 11:3397-3404. [PMID: 36202772 DOI: 10.1021/acssynbio.2c00296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO32-)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO42-) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10-13. In this study, we found that the coexistence of a high dose of phosphate (>0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10-10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a "gatekeeper" residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.
Collapse
Affiliation(s)
- Ryuichi Hirota
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Zen-Ichiro Katsuura
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Naoki Momokawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hiroki Murakami
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takeshi Ikeda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
21
|
Sridhar S, Ajo-Franklin CM, Masiello CA. A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology. ACS Synth Biol 2022; 11:2909-2916. [PMID: 35961652 PMCID: PMC9486965 DOI: 10.1021/acssynbio.2c00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 01/24/2023]
Abstract
Microbial biosensors sense and report exposures to stimuli, thereby facilitating our understanding of environmental processes. Successful design and deployment of biosensors hinge on the persistence of the microbial host of the genetic circuit, termed the chassis. However, model chassis organisms may persist poorly in environmental conditions. In contrast, non-model organisms persist better in environmental conditions but are limited by other challenges, such as genetic intractability and part unavailability. Here we identify ecological, metabolic, and genetic constraints for chassis development and propose a conceptual framework for the systematic selection of environmental biosensor chassis. We identify key challenges with using current model chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.
Collapse
Affiliation(s)
- Swetha Sridhar
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, MS-180, Houston, Texas 77005, United
States
| | - Caroline M. Ajo-Franklin
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Caroline A. Masiello
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department
of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main St, MS-126, Houston, Texas 77005, United
States
| |
Collapse
|
22
|
Moore JAM, Abraham PE, Michener J, Muchero W, Cregger M. Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects. THE NEW PHYTOLOGIST 2022; 234:1914-1918. [PMID: 35098533 PMCID: PMC9314638 DOI: 10.1111/nph.18010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/23/2022] [Indexed: 05/19/2023]
Abstract
The rapidly growing industry of crop biostimulants leverages the application of plant growth promoting rhizobacteria (PGPR) to promote plant growth and health. However, introducing nonnative rhizobacteria may impact other aspects of ecosystem functioning and have legacy effects; these potential consequences are largely unexplored. Nontarget consequences of PGPR may include changes in resident microbiomes, nutrient cycling, pollinator services, functioning of other herbivores, disease suppression, and organic matter persistence. Importantly, we lack knowledge of whether these ecosystem effects may manifest in adjacent ecosystems. The introduced PGPR can leave a functional legacy whether they persist in the community or not. Legacy effects include shifts in resident microbiomes and their temporal dynamics, horizontal transfer of genes from the PGPR to resident taxa, and changes in resident functional groups and interaction networks. Ecosystem functions may be affected by legacies PGPR leave following niche construction, such as when PGPR alter soil pH that in turn alters biogeochemical cycling rates. Here, we highlight new research directions to elucidate how introduced PGPR impact resident microbiomes and ecosystem functions and their capacity for legacy effects.
Collapse
Affiliation(s)
- Jessica A. M. Moore
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37830USA
| | - Paul E. Abraham
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37830USA
| | - Joshua K. Michener
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37830USA
| | - Wellington Muchero
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37830USA
| | - Melissa A. Cregger
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37830USA
| |
Collapse
|
23
|
Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction. Nat Commun 2021; 12:7039. [PMID: 34857769 PMCID: PMC8639764 DOI: 10.1038/s41467-021-27399-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/16/2021] [Indexed: 01/24/2023] Open
Abstract
Site-specific incorporation of unnatural amino acids (UAAs) with similar incorporation efficiency to that of natural amino acids (NAAs) and low background activity is extremely valuable for efficient synthesis of proteins with diverse new chemical functions and design of various synthetic auxotrophs. However, such efficient translation systems remain largely unknown in the literature. Here, we describe engineered chimeric phenylalanine systems that dramatically increase the yield of proteins bearing UAAs, through systematic engineering of the aminoacyl-tRNA synthetase and its respective cognate tRNA. These engineered synthetase/tRNA pairs allow single-site and multi-site incorporation of UAAs with efficiencies similar to those of NAAs and high fidelity. In addition, using the evolved chimeric phenylalanine system, we construct a series of E. coli strains whose growth is strictly dependent on exogenously supplied of UAAs. We further show that synthetic auxotrophic cells can grow robustly in living mice when UAAs are supplemented.
Collapse
|
24
|
Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petrů M, Lau WJ, Ismail AF. Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. CHEMOSPHERE 2021; 285:131535. [PMID: 34329137 DOI: 10.1016/j.chemosphere.2021.131535] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Genetic engineering applications in the field of biofuel are rapidly expanding due to their potential to boost biomass productivity while lowering its cost and enhancing its quality. Recently, fourth-generation biofuel (FGB), which is biofuel obtained from genetically modified (GM) algae biomass, has gained considerable attention from academic and industrial communities. However, replacing fossil resources with FGB is still beset with many challenges. Most notably, technical aspects of genetic modification operations need to be more fully articulated and elaborated. However, relatively little attention has been paid to GM algal biomass. There is a limited number of reviews on the progress and challenges faced in the algal genetics of FGB. Therefore, the present review aims to fill this gap in the literature by recapitulating the findings of recent studies and achievements on safe and efficient genetic manipulation in the production of FGB. Then, the essential issues and parameters related to genome editing in algal strains are highlighted. Finally, the main challenges to FGB pertaining to the diffusion risk and regulatory frameworks are addressed. This review concluded that the technical and biosafety aspects of FGB, as well as the complexity and diversity of the related regulations, legitimacy concerns, and health and environmental risks, are among the most important challenges that require a strong commitment at the national/international levels to reach a global consensus.
Collapse
Affiliation(s)
- Hoofar Shokravi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Zahra Shokravi
- Department of Microbiology, Faculty of Basic Science, Islamic Azad University, Science and Research Branch of Tehran, Markazi, Iran
| | - Mahshid Heidarrezaei
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Michal Petrů
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Woei Jye Lau
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|